Quality Assurance for Document Image Collections in Digital Preservation

  • Reinhold Huber-Mörk
  • Alexander Schindler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7517)


Maintenance of digital image libraries requires to frequently asses the quality of the images to engage preservation measures if necessary. We present an approach to image based quality assurance for digital image collections based on local descriptor matching. We use spatially distinctive local keypoints of contrast enhanced images and robust symmetric descriptor matching to calculate affine transformations for image registration. Structural similarity of aligned images is used for quality assessment. The results show, that our approach can efficiently asses the quality of digitized documents including images of blank paper.


Image Pair Document Image Scale Invariant Feature Transform Optical Character Recognition Image Quality Assessment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: SURF: Speeded up robust features. Computer Vision and Image Understanding (CVIU) 110(3), 346–359 (2008)CrossRefGoogle Scholar
  2. 2.
    van Beusekom, J., Keysers, D., Shafait, F., Breuel, T.: Distance measures for layout-based document image retrieval. In: Second International Conference on Document Image Analysis for Libraries, DIAL 2006, pp. 231–242 (April 2006)Google Scholar
  3. 3.
    van Beusekom, J., Shafait, F., Breuel, T.: Image-Matching for Revision Detection in Printed Historical Documents. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 507–516. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Breuel, T.: Fast recognition using adaptive subdivisions of transformation space. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Proceedings, CVPR 1992, pp. 445–451 (June 1992)Google Scholar
  5. 5.
    Brown, M., Szeliski, R., Winder, S.: Multi-image matching using multi-scale oriented patches. In: Proc. of Conf. on Comput. Vis. and Pat. Rec., San Diego, pp. 510–517 (June 2005)Google Scholar
  6. 6.
    Chaudhury, K., Jain, A., Thirthala, S., Sahasranaman, V., Saxena, S., Mahalingam, S.: Google newspaper search - image processing and analysis pipeline. In: 10th International Conference on Document Analysis and Recognition, ICDAR 2009, pp. 621–625 (July 2009)Google Scholar
  7. 7.
    Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision, ECCV 2004, pp. 1–22 (2004)Google Scholar
  8. 8.
    Doermann, D., Li, H., Kia, O.: The detection of duplicates in document image databases. Image and Vision Computing 16(12-13), 907–920 (1998)CrossRefGoogle Scholar
  9. 9.
    Ferrari, V., Tuytelaars, T., Gool, L.V.: Simultaneous object recognition and segmentation from single or multiple model views. Intl. J. of Comp. Vis. 67(2), 159–188 (2006)CrossRefGoogle Scholar
  10. 10.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gabarda, S., Cristóbal, G.: Blind image quality assessment through anisotropy. J. Opt. Soc. Am. A 24(12), B42–B51 (2007)Google Scholar
  12. 12.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Proc. of ALVEY Vision Conf., pp. 147–152 (1988)Google Scholar
  13. 13.
    Ke, Y., Sukthankar, R., Huston, L.: An efficient parts-based near-duplicate and sub-image retrieval system. In: Proceedings of the 12th Annual ACM International Conference on Multimedia, MULTIMEDIA 2004, pp. 869–876. ACM, New York (2004)CrossRefGoogle Scholar
  14. 14.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. of Comput. Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  15. 15.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. on Pat. Anal. and Mach. Intel. 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  16. 16.
    Moorthy, A., Bovik, A.: Blind image quality assessment: From natural scene statistics to perceptual quality. IEEE Transactions on Image Processing 20(12), 3350–3364 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Pizer, S.M., Amburn, E.P., Austin, J.D., Cromartie, R., Geselowitz, A., Greer, T., Romeny, B.T.H., Zimmerman, J.B., Zuiderveld, K.: Adaptive histogram equalization and its variations. Computer Vision, Graphics, and Image Processing 39 (1987)Google Scholar
  18. 18.
    Ramachandrula, S., Joshi, G., Noushath, S., Parikh, P., Gupta, V.: Paperdiff: A script independent automatic method for finding the text differences between two document images. In: The Eighth IAPR International Workshop on Document Analysis Systems, DAS 2008, pp. 585–590 (September 2008)Google Scholar
  19. 19.
    Rosten, E., Drummond, T.W.: Machine Learning for High-Speed Corner Detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: An efficient alternative to SIFT or SURF. In: International Conference on Computer Vision, Barcelona (November 2011)Google Scholar
  21. 21.
    Wang, Z., Bovik, A.: A universal image quality index. IEEE Signal Processing Letters 9(3), 81–84 (2002)CrossRefGoogle Scholar
  22. 22.
    Wang, Z., Bovik, A.: Mean squared error: Love it or leave it? A new look at signal fidelity measures. IEEE Signal Processing Magazine 26(1), 98–117 (2009)CrossRefGoogle Scholar
  23. 23.
    Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612 (2004)CrossRefGoogle Scholar
  24. 24.
    Wu, X., Zhao, W.L., Ngo, C.W.: Near-duplicate keyframe retrieval with visual keywords and semantic context. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval, CIVR 2007, pp. 162–169. ACM, New York (2007), Google Scholar
  25. 25.
    Xu, D., Cham, T.J., Yan, S., Duan, L., Chang, S.F.: Near duplicate identification with spatially aligned pyramid matching. IEEE Transactions on Circuits and Systems for Video Technology 20(8), 1068–1079 (2010)CrossRefGoogle Scholar
  26. 26.
    Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: A feature similarity index for image quality assessment. IEEE Transactions on Image Processing 20(8), 2378–2386 (2011)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Zhao, W.L., Ngo, C.W., Tan, H.K., Wu, X.: Near-duplicate keyframe identification with interest point matching and pattern learning. IEEE Transactions on Multimedia 9(5), 1037–1048 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Reinhold Huber-Mörk
    • 1
  • Alexander Schindler
    • 1
    • 2
  1. 1.Research Area Intelligent Vision Systems Department Safety & SecurityAustrian Institute of TechnologyAustria
  2. 2.Department of Software Technology and Interactive SystemsVienna University of TechnologyViennaAustria

Personalised recommendations