Skip to main content

PTM Radicals for Molecular-Based Electronic Devices

  • Conference paper
  • First Online:
Architecture and Design of Molecule Logic Gates and Atom Circuits

Abstract

Self-assembled monolayers (SAMs) based on polychlorotrimethylphenyl (PTM) radicals have been prepared on different substrates showing great potential as platforms for the fabrication of molecular electronic devices. It is demonstrated that the intrinsic electrical, optical, and magnetic properties of these molecules can be used to prepare highly robust molecular switches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Song, H., Reed, M.A., Lee, T.: Single molecule electronic devices. Adv. Mater. 23(14), 1583–1608 (2011). doi:10.1002/adma.201004291

    Article  Google Scholar 

  2. Ulman, A.: Formation and structure of self-assembled monolayers. Chem. Rev. 96(4), 1533–1554 (1996). doi:10.1021/cr9502357

    Article  Google Scholar 

  3. Chaki, N.K., Aslam, M., Sharma, J., Vijayamohanan, K.: Applications of self-assembled monolayers in materials chemistry. Proc. Indian Acad. Sci. Chem. Sci. 113(5–6), 659–670 (2001)

    Article  Google Scholar 

  4. Halik, M., Hirsch, A.: The potential of molecular self-assembled monolayers in organic electronic devices. Adv. Mater. 23(22–23), 2689–2695 (2011). doi:10.1002/adma.201100337

    Article  Google Scholar 

  5. Nitzan, A., Ratner, M.A.: Science 300, 1384 (2003)

    Article  ADS  Google Scholar 

  6. Chen, F., Hihath, J., Huang, Z.F., Li, X.L., Tao, N.J.: Annu. Rev. Phys. Chem. 58, 535 (2007)

    Article  ADS  Google Scholar 

  7. Haick, H., Cahen, D.: Prog. Surf. Sci. 83, 217 (2008)

    Article  ADS  Google Scholar 

  8. Mendes, P.M.: Stimuli-responsive surfaces for bio-applications. Chem. Soc. Rev. 37(11), 2512–2529 (2008). doi:10.1039/b714635n

    Article  MathSciNet  Google Scholar 

  9. Kronemeijer, A.J., Akkerman, H.B., Kudernac, T., van Wees, B.J., Feringa, B.L., Blom, P.W.M., de Boer, B.: Reversible conductance switching in molecular devices. Adv. Mater. 20(8), \(1467 - +\) (2008). doi:10.1002/adma.200800053

    Google Scholar 

  10. Mativetsky, J.M., Pace, G., Elbing, M., Rampi, M.A., Mayor, M., Samori, P.: Azobenzenes as light-controlled molecular electronic switches in nanoscale metal-molecule-metal junctions. J. Am. Chem. Soc. 130(29), \(9192 - +\) (2008). doi:10.1021/ja8018093

    Google Scholar 

  11. Ballester, M., Riera, J., Castaner, J., Badia, C., Monso, J.M.: Inert carbon free radicals.1. Perchlorodiphenylmethyl and perchlorotriphenylmethyl radical series. J. Am. Chem. Soc. 93(9), 2215-& (1971). doi:10.1021/ja00738a021

    Google Scholar 

  12. Sporer, C., Ratera, I., Ruiz-Molina, D., Zhao, Y.X., Vidal-Gancedo, J., Wurst, K., Jaitner, P., Clays, K., Persoons, A., Rovira, C., Veciana, J.: A molecular multiproperty switching array based on the redox behavior of a ferrocenyl polychlorotriphenyhnethyl radical. Angew. Chem. Int. Ed. 43(39), 5266–5268 (2004). doi:10.1002/anie.200454150

    Article  Google Scholar 

  13. Crivillers, N., Mas-Torrent, M., Perruchas, S., Roques, N., Vidal-Gancedo, J., Veciana, J., Rovira, C., Basabe-Desmonts, L., Ravoo, B.J., Crego-Calama, M., Reinhoudt, D.N.: Self-assembled monolayers of a multifunctional organic radical. Angew. Chem. Int. Ed. 46(13), 2215–2219 (2007). doi:10.1002/anie.200603599

    Article  Google Scholar 

  14. Crivillers, N., Mas-Torrent, M., Vidal-Gancedo, J., Veciana, J., Rovira, C.: Self-assembled monolayers of electroactive polychlorotriphenylmethyl radicals on Au(111). J. Am. Chem. Soc. 130(16), 5499–5506 (2008). doi:10.1021/ja710845v

    Article  Google Scholar 

  15. Crivillers, N., Munuera, C., Mas-Torrent, M., Simao, C., Bromley, S.T., Ocal, C., Rovira, C., Veciana, J.: Dramatic influence of the electronic structure on the conductivity through open- and closed-shell molecules. Adv. Mater. 21(10–11), 1177–1181 (2009). doi:10.1002/adma.200801707

    Article  Google Scholar 

  16. Aviram, A., Ratner, M.A.: Chem. Phys. Lett. 29, 277 (1974)

    Article  ADS  Google Scholar 

  17. Munuera, C., Barrena, E., Ocal, C.: Scanning force microscopy three-dimensional modes applied to conductivity measurements through linear-chain organic SAMs. Nanotechnology 18(12), 125505 (2007). doi:12550510.1088/0957–4484/18/12/125505

    Article  ADS  Google Scholar 

  18. Chidsey, C.E.D.: Free-energy and temperature-dependence of electron-transfer at the metal-electrolyte interface. Science 251(4996), 919–922 (1991). doi:10.1126/science.251.4996.919

    Article  ADS  Google Scholar 

  19. Salomon, A., Cahen, D., Lindsay, S., Tomfohr, J., Engelkes, V.B., Frisbie, C.D.: Comparison of electronic transport measurements on organic molecules. Adv. Mater. 15(22), 1881–1890 (2003). doi:10.1002/adma.200306091

    Article  Google Scholar 

  20. Mas-Torrent, M., Crivillers, N., Mugnaini, V., Ratera, I., Rovira, C., Veciana, J.: Organic radicals on surfaces: towards molecular spintronics. J. Mater. Chem. 19(12), 1691–1695 (2009). doi:10.1039/b809875a

    Article  Google Scholar 

  21. Crivillers, N., Paradinas, M., Mas-Torrent, M., Bromley, S.T., Rovira, C., Ocal, C., Veciana, J.: Negative differential resistance (NDR) in similar molecules with distinct redox behaviour. Chem. Commun. 47(16), 4664–4666 (2011). doi:10.1039/c1cc10677e

    Article  Google Scholar 

  22. Fuentes, N., Martin-Lasanta, A., Alvarez de Cienfuegos, L., Ribagorda, M., Parra, A., Cuerva, J.M.: Organic-based molecular switches for molecular electronics. Nanoscale 3(10), 4003–4014 (2011). doi:10.1039/c1nr10536a

    Google Scholar 

  23. Simao, C., Mas-Torrent, M., Crivillers, N., Lloveras, V., Manuel Artes, J., Gorostiza, P., Veciana, J., Rovira, C.: A robust molecular platform for non-volatile memory devices with optical and magnetic responses. Nat. Chem. 3(5), 359–364 (2011). doi:10.1038/nchem.1013

    Article  Google Scholar 

  24. Simao, C., Mas-Torrent, M., Veciana, J., Rovira, C.: Multichannel molecular switch with a surface-confined electroactive radical exhibiting tunable wetting properties. Nano Lett. 11(10), 4382–4385 (2011). doi:10.1021/nl2025097

    Article  ADS  Google Scholar 

  25. Abbott, S., Ralston, J., Reynolds, G., Hayes, R.: Reversible wettability of photoresponsive pyrimidine-coated surfaces. Langmuir 15(26), 8923–8928 (1999). doi:10.1021/la990558o

    Article  Google Scholar 

  26. Artzy-Schnirman, A., Brod, E., Epel, M., Dines, M., Hammer, T., Benhar, I., Reiter, Y., Sivan, U.: A two-state electronic antigen and an antibody selected to discriminate between these states. Nano Lett. 8(10), 3398–3403 (2008). doi:10.1021/nl8020895

    Article  ADS  Google Scholar 

  27. Lahann, J., Mitragotri, S., Tran, T.N., Kaido, H., Sundaram, J., Choi, I.S., Hoffer, S., Somorjai, G.A., Langer, R.: A reversibly switching surface. Science 299(5605), 371–374 (2003). doi:10.1126/science.1078933

    Article  ADS  Google Scholar 

  28. Liu, Y., Mu, L., Liu, B.H., Zhang, S., Yang, P.Y., Kong, J.L.: Controlled protein assembly on a switchable surface. Chem. Commun. (10), 1194–1195 (2004). doi:10.1039/b400776j

    Article  Google Scholar 

  29. Wieckowska, A., Braunschweig, A.B., Willner, I.: Electrochemical control of surface properties using a quinone-functionalized monolayer: effects of donor-acceptor complexes. Chem. Commun. (38), 3918–3920 (2007). doi:10.1039/b710540a

    Article  Google Scholar 

  30. De Silva, A.P., James, M.R., McKinney, B.O.F., Pears, D.A., Weir, S.M.: Molecular computational elements encode large populations of small objects. Nat. Mater. 5(10), 787–790 (2006). doi:10.1038/nmat1733

    Article  ADS  Google Scholar 

  31. De Silva, A.P., Uchiyama, S.: Molecular logic and computing. Nat. Nanotechnol. 2(7), 399–410 (2007). doi:10.1038/nnano.2007.188

    Article  ADS  Google Scholar 

  32. Gupta, T., van der Boom, M.E.: Redox-active monolayers as a versatile platform for integrating Boolean logic gates. Angew. Chem. Int. Ed. 47(29), 5322–5326 (2008). doi:10.1002/anie.200800830

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN); the DGI (Spain) with projects POMAS CTQ2010–19501/BQU, MAT2010–20020, and NANOSELECT CSD2007–00041; and the Generalitat de Catalunya (grant 2009SGR00516). We also thank the European project ERC StG 2012-306826 e-GAMES. N.C thanks to Juan de la Cierva program,and M. P. acknowledges the Spanish government for financial support through BES-2008–003588 FPI fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Concepció Rovira or Jaume Veciana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Crivillers, N. et al. (2013). PTM Radicals for Molecular-Based Electronic Devices. In: Lorente, N., Joachim, C. (eds) Architecture and Design of Molecule Logic Gates and Atom Circuits. Advances in Atom and Single Molecule Machines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33137-4_6

Download citation

Publish with us

Policies and ethics