Skip to main content

Switching Mechanisms for Single-Molecule Logic Gates

  • Conference paper
  • First Online:
Book cover Architecture and Design of Molecule Logic Gates and Atom Circuits

Part of the book series: Advances in Atom and Single Molecule Machines ((AASMM))

  • 1211 Accesses

Abstract

Single-molecule logic gates have the potential to fundamentally revolutionize computer architecture. However, performing any type of logic function within a single molecule requires using external inputs to modify one or more of the intrinsic properties of the molecule, such as its geometrical conformation, electronic structure, or spin configuration. In this chapter, we will discuss the variety of different physical mechanisms which have been proposed to induce and control such changes, ranging from applied potential bias and electric fields to chemical interactions to mechanical pressure, focusing in particular on their suitability for use in single-molecule logic circuitry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Joachim, C., Gimzewski, J.K., Aviram, A.: Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541 (2000)

    Article  ADS  Google Scholar 

  2. Joachim, C.: Bonding more atoms together for a single molecule computer. Nanotechnology 13, R1 (2002)

    Article  ADS  Google Scholar 

  3. Credi, A., Balzani, V., Langford, S.J., Fraser Stoddart, J.: Logic operations at the molecular level. An XOR gate based on a molecular machine. J. Am. Chem. Soc. 119, 2679 (1997)

    Google Scholar 

  4. Prasanna de Silva, A., McClenaghan, N.D.: Proof-of-principle of molecular-scale arithmetic. J. Am. Chem. Soc. 122, 3965 (2000)

    Google Scholar 

  5. Heinrich, A.J., Lutz, C.P., Gupta, J.A., Eigler, D.M.: Molecule cascades. Science 298, 1381 (2002)

    Google Scholar 

  6. Ami, S., Hliwa, M., Joachim, C.: Molecular OR and AND logic gates integrated in a single molecule. Chem. Phys. Lett. 367, 662 (2003)

    Article  ADS  Google Scholar 

  7. Margulies, D., Melman, G., Shanzer, A.: A molecular full-adder and full-subtractor, an additional step toward a moleculator. J. Am. Chem. Soc. 128, 4865 (2006)

    Article  Google Scholar 

  8. Magri, D.C., Brown, G.J., McClean, G.D., Prasanna de Silva, A.: Communicating chemical congregation: a molecular and logic gate with three chemical inputs as a lab-on-a-molecule prototype. J. Am. Chem. Soc. 128, 4950 (2006)

    Google Scholar 

  9. Soe, W.-H., Manzano, C., Renaud, N., de Mendoza, P., De Sarkar, A., Ample, F., Hliwa, M., Echavarren, A.M., Chandrasekhar, N., Joachim, C.: Manipulating molecular quantum states with classical metal atom inputs: demonstration of a single molecule NOR logic gate. ACS Nano 5, 1436 (2011)

    Article  Google Scholar 

  10. Soe, W.-H., Manzano, C., De Sarkar, A., Ample, F., Chandrasekhar, N., Renaud, N., de Mendoza, P., Echavarren, A.M., Hliwa, M., Joachim, C.: Demonstration of a NOR logic gate using a single molecule and two surface gold atoms to encode the logical input. Phys. Rev. B 83, 155443 (2011)

    Article  ADS  Google Scholar 

  11. van der Molen, S.J., Liljeroth, P.: Charge transport through molecular switches. J. Phys.: Condens. Matter 22, 133001 (2010)

    Article  ADS  Google Scholar 

  12. Montgomery, S.W., Holalkere, V.R.: Carbon nanotube thermal interface structures. US Patent No. 6965513 B2 (2005)

    Google Scholar 

  13. Eigler, D.M., Lutz, C.P., Rudge, W.E.: An atomic switch realized with the scanning tunnelling microscope. Nature 352, 600 (1991)

    Article  ADS  Google Scholar 

  14. Binnig, G., Rohrer, H., Gerber, Ch., Weibel, E.: Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 40, 178 (1982)

    Article  ADS  Google Scholar 

  15. Binnig, G., Rohrer, H., Gerber, Ch., Weibel, E.: Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57 (1982)

    Article  ADS  Google Scholar 

  16. Gao, S., Persson, M., Lundqvist, B.I.: Theory of atom transfer with a scanning tunneling microscope. Phys. Rev. B 55, 4825 (1997)

    Article  ADS  Google Scholar 

  17. Sperl, A., Kröger, J., Berndt, R.: Direct observation of conductance fluctuations of a single-atom tunneling contact. Phys. Rev. B 81, 035406 (2010)

    Article  ADS  Google Scholar 

  18. Brumme, T., Neucheva, O.A., Toher, C., Gutiérrez, R., Weiss, C., Temirov, R., Greuling, A., Kaczmarski, M., Rohlfing, M., Tautz, F.S., Cuniberti, G.: Dynamical bistability of single-molecule junctions: a combined experimental and theoretical study of PTCDA on Ag(111). Phys. Rev. B 84, 115449 (2011)

    Article  ADS  Google Scholar 

  19. Tikhodeev, S.G., Ueba, H.: How vibrationally assisted tunneling with STM affects the motions and reactions of single adsorbates. Phys. Rev. Lett. 102, 246101 (2009)

    Article  ADS  Google Scholar 

  20. Kumagai, T., Kaizu, M., Hatta, S., Okuyama, H., Aruga, T., Direct observation of hydrogen-bond exchange within a single water dimer. Phys. Rev. Lett. 100, 166101 (2008)

    Article  ADS  Google Scholar 

  21. Henzl, J., Mehlhorn, M., Gawronski, H., Rieder, K.-H., Morgenstern, K.: Reversible cis-trans isomerization of a single azobenzene molecule. Angew. Chem. Int. Ed. 45, 603 (2006)

    Article  Google Scholar 

  22. Pavliček, N., Fleury, B., Neu, M., Niedenführ, J., Herranz-Lancho, C., Ruben, M., Repp, J.: Atomic force microscopy reveals bistable configurations of dibenzo[a,h]thianthrene and their interconversion pathway. Phys. Rev. Lett. 108, 086101 (2012)

    Article  ADS  Google Scholar 

  23. Liljeroth, P., Repp, J., Meyer, G.: Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317, 1203 (2007)

    Article  ADS  Google Scholar 

  24. Auwärter, W., Seufert, K., Bischoff, F., Ecija, D., Vijayaraghavan, S., Joshi, S., Klappenberger, F., Samudrala, N., Barth, J.V.: A surface-anchored molecular four-level conductance switch based on single proton transfers. Nat. Nanotechnol. 7, 41 (2011)

    Article  ADS  Google Scholar 

  25. Ohmann, R., Vitali, L., Kern, K.: Actuated transitory metal-ligand bond as tunable electromechanical switch. Nano Lett. 10, 2995 (2010)

    Article  ADS  Google Scholar 

  26. Baadji, N., Kuck, S., Brede, J., Hoffmann, G., Wiesendanger, R., Sanvito, S.: Controlled sequential dehydrogenation of single molecules by scanning tunneling microscopy. Phys. Rev. B 82, 115447 (2010)

    Article  ADS  Google Scholar 

  27. Repp, J., Meyer, G., Olsson, F.E., Persson, M.: Controlling the charge state of individual gold adatoms. Science 305, 493 (2004)

    Article  ADS  Google Scholar 

  28. Olsson, F.E., Persson, M., Paavilainen, S., Repp, J., Meyer, G.: Multiple charge states of Ag atoms on ultrathin NaCl films. Phys. Rev. Lett. 98, 176803 (2007)

    Article  ADS  Google Scholar 

  29. Fernández-Torrente, I., Kreikemeyer-Lorenzo, D., Strózecka, A., Franke, K.J., Pascual, J.I.: Gating the charge state of single molecules by local electric fields. Phys. Rev. Lett. 108, 036801 (2012)

    Article  ADS  Google Scholar 

  30. Leoni, T., Guillermet, O., Walch, H., Langlais, V., Scheuermann, A., Bonvoisin, J., Gauthier, S.: Controlling the charge state of a single redox molecular switch. Phys. Rev. Lett. 106, 216103 (2011)

    Article  ADS  Google Scholar 

  31. Wu, S.W., Ogawa, N., Nazin, G.V., Ho, W.: Conductance hysteresis and switching in a single-molecule junction. J. Phys. Chem. C 112, 5241 (2008)

    Article  Google Scholar 

  32. Tao, N.J.: Probing potential-tuned resonant tunneling through redox molecules with scanning tunneling microscopy. Phys. Rev. Lett. 76, 4066 (1996)

    Article  ADS  Google Scholar 

  33. Park, J., Pasupathy, A.N., Goldsmith, J.I., Chang, C., Yaish, Y., Petta, J.R., Rinkoski, M., Sethna, J.P., Abruna, H.D., McEuen, P.L., Ralph, D.C.: Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722 (2002)

    Article  ADS  Google Scholar 

  34. Haiss, W., van Zalinge, H., Higgins, S.J., Bethell, D., Höbenreich, H., Schiffrin, D.J., Nichols, R.J.: Redox state dependence of single molecule conductivity. J. Am. Chem. Soc. 125, 15294 (2003)

    Article  Google Scholar 

  35. Li, X., Hihath, J., Chen, F., Masuda, T., Zang, L., Tao, N.: Thermally activated electron transport in single redox molecules. J. Am. Chem. Soc. 129, 11535 (2007)

    Article  Google Scholar 

  36. Simão, C., Mas-Torrent, M., Casado-Montenegro, J., Otón, F., Veciana, J., Rovira, C.: A three-state surface-confined molecular switch with multiple channel outputs. J. Am. Chem. Soc. 133, 13256 (2011)

    Article  Google Scholar 

  37. Osorio, E.A., O’Neill, K., Wegewijs, M., Stuhr-Hansen, N., Paaske, J., Bjørnholm, T., van der Zant, H.S.J.: Electronic excitations of a single molecule contacted in a three-terminal configuration. Nano Lett. 7, 3336 (2007)

    Article  ADS  Google Scholar 

  38. Osorio, E.A., O’Neill, K., Stuhr-Hansen, N., Nielsen, O.F., Bjørnholm, T., van der Zant, H.S.J.: Addition energies and vibrational fine structure measured in electromigrated single-molecule junctions based on an oligophenylenevinylene derivative. Adv. Mater. 19, 281 (2007)

    Article  Google Scholar 

  39. Fuechsle, M., Miwa, J.A., Mahapatra, S., Ryu, H., Lee, S., Warschkow, O., Hollenberg, L.C.L., Klimeck, G., Simmons, M.Y.: A single-atom transistor. Nat. Nanotechnol. 7, 242 (2012)

    Article  ADS  Google Scholar 

  40. Qiu, X.H., Nazin, G.V., Ho, W.: Mechanisms of reversible conformational transitions in a single molecule. Phys. Rev. Lett. 93, 196806 (2004)

    Article  ADS  Google Scholar 

  41. Alemani, M., Peters, M.V., Hecht, S., Rieder, K.H., Moresco, F., Grill, L.: Electric field-induced isomerization of azobenzene by STM. J. Am. Chem. Soc. 128, 14446 (2006)

    Article  Google Scholar 

  42. Harikumar, K.R., Polanyi, J.C., Sloan, P.A., Ayissi, S., Hofer, W.A.: Electronic switching of single silicon atoms by molecular field effects. J. Am. Chem. Soc. 128, 16791 (2006)

    Article  Google Scholar 

  43. Lörtscher, E., Ciszek, J.W., Tour, J., Riel, H.: Reversible and controllable switching of a single-molecule junction. Small 2, 973 (2006)

    Article  Google Scholar 

  44. Meded, V., Bagrets, A., Arnold, A., Evers, F.: Molecular switch controlled by pulsed bias voltages. Small 5, 2218 (2009)

    Article  Google Scholar 

  45. Grunder, S., Huber, R., Horhoiu, V., González, M.T., Schönenberger, C., Calame, M., Mayor, M.: New cruciform structures: toward coordination induced single molecule switches. J. Org. Chem. 72, 8337 (2007)

    Article  Google Scholar 

  46. Moresco, F., Meyer, G., Rieder, K.-H., Tang, H., Gourdon, A., Joachim, C.: Conformational changes of single molecules induced by scanning tunneling microscopy manipulation: a route to molecular switching. Phys. Rev. Lett. 86, 672 (2001)

    Article  ADS  Google Scholar 

  47. Loppacher, C., Guggisberg, M., Pfeiffer, O., Meyer, E., Bammerlin, M., Lüthi, R., Schlittler, R., Gimzewski, J.K., Tang, H., Joachim, C.: Direct determination of the energy required to operate a single molecule switch. Phys. Rev. Lett. 90, 066107 (2003)

    Article  ADS  Google Scholar 

  48. Kim, Y., Song, H., Strigl, F., Pernau, H.-F., Lee, T., Scheer, E.: Conductance and vibrational states of single-molecule junctions controlled by mechanical stretching and material variation. Phys. Rev. Lett. 106, 196804 (2011)

    Article  ADS  Google Scholar 

  49. Bhandary, S., Ghosh, S., Herper, H., Wende, H., Eriksson, O., Sanya, B.: Graphene as a reversible spin manipulator of molecular magnets. Phys. Rev. Lett. 107, 257202 (2011)

    Article  ADS  Google Scholar 

  50. Quek, S.Y., Kamenetska, M., Steigerwald, M.L., Choi, H.J., Louie, S.G., Hybertsen, M.S., Neaton, J.B., Venkataraman, L.: Mechanically controlled binary conductance switching of a single-molecule junction. Nat. Nanotechnol. 4, 230 (2009)

    Article  ADS  Google Scholar 

  51. Lee, H.J., Ho, W.: Single-bond formation and characterization with a scanning tunneling microscope. Science 286, 1719 (1999)

    Article  Google Scholar 

  52. Nazin, G.V., Qiu, X.H., Ho, W.: Visualization and spectroscopy of a metal-molecule-metal bridge. Science 302, 77 (2003)

    Article  ADS  Google Scholar 

  53. Yamachika, R., Grobis, M., Wachowiak, A., Crommie, M.F.: Visualization and spectroscopy of a metal-molecule-metal bridge. Science 304, 281 (2004)

    Article  ADS  Google Scholar 

  54. Wegner, D., Yamachika, R., Zhang, X., Wang, Y., Baruah, T., Pederson, M.R., Bartlett, B.M., Long, J.R., Crommie, M.F.: Tuning molecule-mediated spin coupling in bottom-up-fabricated vanadium-tetracyanoethylene nanostructures. Phys. Rev. Lett. 103, 087205 (2009)

    Article  ADS  Google Scholar 

  55. Repp, J., Meyer, G., Paavilainen, S., Olsson, F.E., Persson, M.: Imaging bond formation between a gold atom and pentacene on an insulating surface. Science 312, 1196 (2006)

    Article  ADS  Google Scholar 

  56. Mohn, F., Repp, J., Gross, L., Meyer, G., Dyer, M.S., Persson, M.: Reversible bond formation in a gold-atom organic-molecule complex as a molecular switch. Phys. Rev. Lett. 105, 266102 (2010)

    Article  ADS  Google Scholar 

  57. Liljeroth, P., Swart, I., Paavilainen, S., Repp, J., Meyer, G.: Single-molecule synthesis and characterization of metal-ligand complexes by low-temperature STM. Nano Lett. 10, 2475 (2010)

    Article  ADS  Google Scholar 

  58. Wang, W., Shi, X., Lin, C., Zhang, R.Q., Minot, C., Van Hove, M.A., Hong, Y., Tang, B.Z., Lin, N.: Manipulating localized molecular orbitals by single-atom contacts. Phys. Rev. Lett. 105, 126801 (2010)

    Article  ADS  Google Scholar 

  59. Zhang, C., Du, M.-H., Cheng, H.-P., Zhang, X.-G., Roitberg, A.E., Krause, J.L.: Coherent electron transport through an azobenzene molecule: a light-driven molecular switch. Phys. Rev. Lett. 92, 158301 (2004)

    Article  ADS  Google Scholar 

  60. Zhang, C., He, Y., Cheng, H.-P., Xue, Y., Ratner, M.A., Zhang, X.-G., Krstic, P.: Current voltage characteristics through a single light-sensitive molecule. Phys. Rev. B 73, 125445 (2006)

    Article  ADS  Google Scholar 

  61. del Valle, M., Gutierrez, R., Tejedor, C., Cuniberti, G.: Tuning the conductance of a molecular switch. Nat. Nanotechnol. 2, 176 (2007)

    Article  ADS  Google Scholar 

  62. Nozaki, D., Cuniberti, G.: Silicon-based molecular switch junctions. Nano Res. 2, 648 (2009)

    Article  Google Scholar 

  63. van der Molen, S.J., Liao, J., Kudernac, T., Agustsson, J.S., Bernard, L., Calame, M., van Wees, B.J., Feringa, B.L., Schönenberger, C.: Light-controlled conductance switching of ordered metal-molecule-metal devices. Nano Lett. 9, 76 (2009)

    Article  ADS  Google Scholar 

  64. Óvári, L., Luo, Y., Leyssner, F., Haag, R., Wolf, M., Tegeder, P.: Adsorption and switching properties of a N-benzylideneaniline based molecular switch on a Au(111) surface. J. Chem. Phys. 133, 044707 (2010)

    Article  ADS  Google Scholar 

  65. Battacharyya, S., Kibel, A., Kodis, G., Liddell, P.A., Gervaldo, M., Gust, D., Lindsay, S.A.: Optical modulation of molecular conductance. Nano Lett. 11, 2709 (2011)

    Article  Google Scholar 

  66. Hagen, S., Leyssner, F., Nandi, D., Wolf, M., Tegeder, P.: Reversible switching of tetra-tert-butyl-azobenzene on a Au(111) surface induced by light and thermal activation. Chem. Phys. Lett. 444, 85 (2007)

    Article  ADS  Google Scholar 

  67. Comstock, M.J., Levy, N., Kirakosian, A., Cho, J., Lauterwasser, F., Harvey, J.H., Strubbe, D.A., Fréchet, J.M.J., Trauner, D., Louie, S.G., Crommie, M.F.: Reversible photomechanical switching of individual engineered molecules at a metallic surface. Phys. Rev. Lett. 99, 038301 (2007)

    Article  ADS  Google Scholar 

  68. Bazarnik, M., Henzl, J., Czajka, R., Morgenstern, K.: Light driven reactions of single physisorbed azobenzenes. Chem. Comm. 47, 7764 (2011)

    Article  Google Scholar 

  69. Henzl, J., Puschnig, P., Ambrosch-Draxl, C., Schaate, A., Ufer, B., Behrens, P., Morgenstern, K.: Photoisomerization for a molecular switch in contact with a surface. Phys. Rev. B 85, 035410 (2012)

    Article  ADS  Google Scholar 

  70. Mielke, J., Leyssner, F., Koch, M., Meyer, S., Luo, Y., Selvanathan, S., Haag, R., Tegeder, P., Grill, L.: Imine Derivatives on Au(111): evidence for “inverted” thermal isomerization. ACS Nano 5, 2090 (2011)

    Article  Google Scholar 

  71. Danilov, A.V., Kubatkin, S.E., Kafanov, S.G., Flensberg, K., Bjørnholm, T.: Electron transfer dynamics of bistable single-molecule junctions. Nano Lett. 6, 2184 (2006)

    Article  ADS  Google Scholar 

  72. Gütlich, P., Hauser, A., Spiering, H.: Thermal and optical switching of iron(II) complexes. Angew. Chem. Int. Ed. 33, 2024 (1994)

    Article  Google Scholar 

  73. Real, J.A., Gaspar, A.B., Muñoz, M.C.: Thermal, pressure and light switchable spin-crossover materials. Dalton Trans. 34, 2062 (2005)

    Article  Google Scholar 

  74. Gamez, P., Sánchez Costa, J., Quesada, M., Aromi, G.: Iron spin-crossover compounds: from fundamental studies to practical applications. Dalton Trans. 38, 7845 (2009)

    Article  Google Scholar 

  75. Mannini, M., Pineider, F., Sainctavit, P., Danieli, C., Otero, E., Sciancalepore, C., Talarico, A.M., Arrio, M.-A., Cornia, A., Gatteschi, D., Sessoli, R.: Magnetic memory of a single-molecule quantum magnet wired to a gold surface. Nat. Mater. 8, 194 (2009)

    Article  ADS  Google Scholar 

  76. Baadji, N., Piacenza, M., Tugsuz, T., Della Sala, F., Maruccio, G., Sanvito, S.: Electrostatic spin crossover effect in polar magnetic molecules. Nat. Mater. 8, 813 (2009)

    Article  ADS  Google Scholar 

  77. Hao, H., Zheng, X., Song, L., Wang, R., Zeng, Z.: Electrostatic spin crossover in a molecular junction of a single-molecule magnet Fe2. Phys. Rev. Lett. 108, 017202 (2012)

    Article  ADS  Google Scholar 

  78. Diefenbach, M., Kim, K.S.: Towards molecular magnetic switching with an electric bias. Angew. Chem. Int. Ed. 46, 7640 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

Funding by the European Union and the Free State of Saxony (ECEMP project A2 (EFRE), ESF project 080942409 InnovaSens), and the ICT-FET Integrated Project AtMol is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Toher or G. Cuniberti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Toher, C., Moresco, F., Cuniberti, G. (2013). Switching Mechanisms for Single-Molecule Logic Gates. In: Lorente, N., Joachim, C. (eds) Architecture and Design of Molecule Logic Gates and Atom Circuits. Advances in Atom and Single Molecule Machines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33137-4_5

Download citation

Publish with us

Policies and ethics