Skip to main content

Quantum Interference Effects in Electron Transport: How to Select Suitable Molecules for Logic Gates and Thermoelectric Devices

  • Conference paper
  • First Online:
Architecture and Design of Molecule Logic Gates and Atom Circuits

Part of the book series: Advances in Atom and Single Molecule Machines ((AASMM))

Abstract

Since the concepts for the implementation of data storage and logic gates used in conventional electronics cannot be simply downscaled to the level of single-molecule devices, new architectural paradigms are needed, where quantum interference (QI) effects are likely to provide an useful starting point. In order to be able to use QI for design purposes in single-molecule electronics, the relation between their occurrence and molecular structure has to be understood at such a level that simple guidelines for electrical engineering can be established. We made a big step towards this aim by developing a graphical scheme that allows for the prediction of the occurrence or absence of QI-induced minima in the transmission function, and the derivation of this method will form the centrepiece of this review article. In addition the possible usefulness of QI effects for thermoelectric devices is addressed, where the peak shape around a transmission minimum is of crucial importance and different rules for selecting suitable molecules have to be found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baer, R., Neuhauser, D.: Phase coherent electronics: a molecular switch based on quantum interference. J. Am. Chem. Soc. 124, 4200–4201 (2002) doi:10.1021/ja016605s

    Article  Google Scholar 

  2. Stadler, R., Forshaw, M., Joachim, C.: Modulation of electron transmission for molecular data storage. Nanotechnology 14, 138–142 (2003) doi:10.1088/09570–4484/14/2/307

    Article  ADS  Google Scholar 

  3. Stadler, R., Ami, S., Forshaw, M., Joachim, C.: Integrating logic functions inside a single molecule. Nanotechnology 15, S115–S121 (2004) doi:10.1088/0957–4484/15/4/001

    Article  ADS  Google Scholar 

  4. Van Dijk, E.H., Myles, D.J.T., Van der Veen, M.H., Hummelen, J.C.: Synthesis and properties of an anthraquinone-based redox switch for molecular electronics. Org. Lett. 8, 2333–2336 (2006) doi:10.1021/ol0606278

    Article  Google Scholar 

  5. Andrews, D.Q., Solomon, G.C., Van Duyne, R.P., Ratner, M.A.: Single molecule electronics: increasing dynamic range and switching speed using cross-conjugated species. J. Am. Chem. Soc. 130, 17309–17319 (2008) doi:10.1021/ja804399q

    Article  Google Scholar 

  6. Markussen, T., Schiötz, J., Thygesen, K.S.: Electrochemical control of quantum interference in anthraquinone-based molecular switches. J. Chem. Phys. 132, 224104 (2010) doi:10.1063/1.3451265

    Article  ADS  Google Scholar 

  7. Bergfield, J.P., Stafford, C.A.: Thermoelectric signatures of coherent transport in single-molecule heterojunctions. Nano Lett. 9, 3072–3076 (2009) doi:10.1021/nl901554s

    Article  ADS  Google Scholar 

  8. Finch, C.M., Garcia-Suarez, V.M., Lambert, C.J.: Giant thermopower and figure of merit in single-molecule devices. Phys. Rev. B 79, 033405 (2009) doi:10.1103/PhysRevB.79.033405

    Article  ADS  Google Scholar 

  9. Bergfield, J.P., Solis, M.A., Stafford, C.A.: Giant thermoelectric effect from transmission supernodes. ACS Nano 4, 5314–5320 (2010) doi:10.1021/nn100490g

    Article  Google Scholar 

  10. Nozaki, D., Sevincli, H., Li, W., Gutierrez, R., Cuniberti, G.: Engineering the figure of merit and thermopower in single-molecule devices connected to semiconducting electrodes. Phys. Rev. B 81, 235406 (2010) doi:10.1103/PhysRevB.81.235406

    Article  ADS  Google Scholar 

  11. Saha, K.K., Markussen, T., Thygesen, K.S., Nikolic, B.: Multiterminal single-molecule graphene-nanoribbon junctions with the thermoelectric figure of merit optimized via evanescent mode transport and gate voltage. Phys. Rev. B 84, 041412(R) (2011) doi:10.1103/PhysRevB.84.041412

    Google Scholar 

  12. Paulsson, M., Datta, S.: Thermoelectric effect in molecular electronics. Phys. Rev. B 67, 241403(R) (2003) doi:10.1103/PhysRevB.67.241403

    Google Scholar 

  13. Markussen, T., Stadler, R., Thygesen, K.S.: The relation between structure and quantum interference in single molecule junctions. Nano Lett. 10, 4260–4265 (2010) doi:10.1021/nl101688a

    Article  ADS  Google Scholar 

  14. Markussen, T., Stadler, R., Thygesen, K.S.: Graphical prediction of quantum interference-induced transmission nodes in functionalized organic molecules. Phys. Chem. Chem. Phys. 13, 14311–14317 (2011) doi:10.1039/C1CP20924H

    Article  Google Scholar 

  15. Stadler, R., Markussen, T.: Controlling the transmission line shape of molecular t-stubs and potential thermoelectric applications. J. Chem. Phys. 135, 154109 (2011) doi:10.1063/1.3653790

    Article  ADS  Google Scholar 

  16. Forshaw, M., Stadler, R., Crawley, D., Nikolic, K.: A short review of nanoelectronic architectures. Nanotechnology 15, S220–S223 (2004) doi:10.1088/0957–4484/15/4/019

    Article  ADS  Google Scholar 

  17. Stadler, R., Ami, S., Forshaw, M., Joachim, C.: A memory/adder model based on single C60 molecular transistors. Nanotechnology 12, 350–357 (2011) doi:10.1088/0957–4484/12/3/324

    Article  ADS  Google Scholar 

  18. Stadler, R., Forshaw, M.: The performance of hybrid-molecular architectures with current CMOS technology as a reference. Physica E 13, 930–933 (2002) doi:10.1016/S1386–9477(02)00237–0

    Article  ADS  Google Scholar 

  19. Stadler, R., Ami, S., Forshaw, M., Joachim, C.: A tight-binding study of computer circuits for adding numbers inside a molecule. Nanotechnology 13, 424–428 (2002) doi:10.1088/0957–4484/13/3/336

    Article  ADS  Google Scholar 

  20. Stadler, R., Ami, S., Forshaw, M., Joachim, C.: A tight-binding study of a 1-bit half-adder based on diode logic integrated inside a single molecule. Nanotechnology 14: 722–732 (2003) doi:10.1088/0957-4484/14/7/306

    Article  ADS  Google Scholar 

  21. Porod, W., Shao, Z., Lent, C.S.: Transmission resonances and zeros in quantum waveguides with resonantly coupled cavities. Appl. Phys. Lett. 61, 1350 (1992) doi:10.1063/1.107588

    Article  ADS  Google Scholar 

  22. Porod, W., Shao, Z., Lent, C.S.: Resonance-antiresonance line shape for transmission in quantum waveguides with resonantly coupled cavities. Phys. Rev. B 48, 8495–8498 (1993) doi:10.1103/PhysRevB.48.8495

    Article  ADS  Google Scholar 

Download references

Acknowledgements

R.S. is currently supported by the Austrian Science Fund FWF, project Nr. P22548, and is deeply indebted to his collaborators in the work reviewed in this chapter, namely, Troels Markussen, Kristian S. Thygesen, Mike Forshaw, Christian Joachim and Stephane Ami.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Stadler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stadler, R. (2013). Quantum Interference Effects in Electron Transport: How to Select Suitable Molecules for Logic Gates and Thermoelectric Devices. In: Lorente, N., Joachim, C. (eds) Architecture and Design of Molecule Logic Gates and Atom Circuits. Advances in Atom and Single Molecule Machines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33137-4_3

Download citation

Publish with us

Policies and ethics