Skip to main content

Towards Post-CMOS Molecular Logic Devices

  • Conference paper
  • First Online:
Architecture and Design of Molecule Logic Gates and Atom Circuits

Abstract

The use of molecular devices in post-CMOS devices and structures is described. Particularly we demonstrate the fabrication and characterization of two-novel devices: a two-terminal device which exhibits a two-negative differential resistance peaks and a sub-10-nm-channel vertical molecular transistor which contains a molecular quantum-dot compound. We show that the latter device can be operated in two distinct modes: gate-controlled switch and gate-controlled hysteresis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schaller, R.R.: Moore’s law: past, present, and future. IEEE Spectrum 34, 52–& (1997)

    Google Scholar 

  2. International Roadmap for Semiconductors (Semiconductor Industry Association (SIA), SEMATECH, 2010)

    Google Scholar 

  3. Colinge, J.P., Colinge, C.A.: Physics of Semiconductor Devices. Kluwer Academic, Norwell (2002)

    Google Scholar 

  4. Campbell, S.A.: Fabrication Engineering at the Micro and Nanoscale. Oxford University Press, Oxford (2004)

    Google Scholar 

  5. Rupp, K., Selberherr, S.: The economic limit to Moore’s law. IEEE T Semiconduct. M 24, 1–4 (2011)

    Article  Google Scholar 

  6. Frank, D.J. et al.: Device scaling limits of Si MOSFETs and their application dependencies. P IEEE 89, 259–288 (2001)

    Article  Google Scholar 

  7. Lemme, M.C. et al.: Subthreshold behavior of triple-gate MOSFETs on SOI material. Solid State Electron. 48, 529–534 (2004)

    Article  ADS  Google Scholar 

  8. Kim, N.S. et al.: Leakage current: Moore’s law meets static power. Computer 36, 68– + (2003)

    Google Scholar 

  9. Lu, W., Lieber, C.M.: Nanoelectronics from the bottom up. Nat. Mater. 6, 841–850 (2007)

    Article  ADS  Google Scholar 

  10. Stan, M.R., Franzon, P.D., Goldstein, S.C., Lach, J.C., Ziegler, M.M.: Molecular electronics: From devices and interconnect to circuits and architecture. P IEEE 91, 1940–1957 (2003)

    Article  Google Scholar 

  11. Heath, J.R., Kuekes, P.J., Snider, G.S., Williams, R.S.: A defect-tolerant computer architecture: Opportunities for nanotechnology. Science 280, 1716–1721 (1998)

    Article  Google Scholar 

  12. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)

    Article  ADS  Google Scholar 

  13. Mentovich, E.D., Belgorodsky, B., Kalifa, I., Cohen, H., Richter, S.: Large-scale fabrication of 4-nm-channel vertical protein-based ambipolar transistors. Nano Lett. 9, 1296–1300 (2009)

    Article  ADS  Google Scholar 

  14. Strukova, D.B., Kohlstedta, H.: Resistive switching phenomena in thin films: Materials, devices, and applications. MRS Bull. 37, 108–114 (2012)

    Article  Google Scholar 

  15. Raoux, S., Ielmini, D., M., W., Karpov, I.: Phase change materials. MRS Bull. 37, 118–123 (2012)

    Google Scholar 

  16. Zimbovskaya, N.A., Pederson, M.R.: Electron transport through molecular junctions. Phys. Rep. 509, 1–87 (2011)

    Article  ADS  Google Scholar 

  17. Mentovich, E.D. et al.: Multipeak negative-differential-resistance molecular device. Small 4, 55–58 (2008)

    Article  Google Scholar 

  18. Metzger, R.M.: Unimolecular electronics. J. Mater. Chem. 18, 4364–4396 (2008)

    Article  ADS  Google Scholar 

  19. Orihashi, N., Hattori, S., Asada, M.: Millimeter and submillimeter oscillators using resonant tunneling diodes with stacked-layer slot antennas. Jpn. J. Appl. Phys. 2(43), L1309–L1311 (2004)

    Google Scholar 

  20. Maezawa, K. et al.: High-power oscillations in resonant tunneling diode pair oscillator ICs fabricated with metamorphic devices. Jpn. J. Appl. Phys. 1(46), 2306–2308 (2007)

    Google Scholar 

  21. Metzger, R.M.: Unimolecular electrical rectifiers. Chem. Rev. 103, 3803–3834 (2003)

    Article  Google Scholar 

  22. Joachim, C., Gimzewski, J.K., Aviram, A.: Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000)

    Article  ADS  Google Scholar 

  23. Rose, G.S., Stan, M.R.: A programmable majority logic array using molecular scale electronics. IEEE T Circ. I 54, 2380–2390 (2007)

    Google Scholar 

  24. Mathews, R.H. et al.: A new RTD-FET logic family. P IEEE 87, 596–605 (1999)

    Article  Google Scholar 

  25. Collier, C.P. et al.: Electronically configurable molecular-based logic gates. Science 285, 391–394 (1999)

    Article  Google Scholar 

  26. Heath, J.R.: Molecular electronics. Annu. Rev. Mater. Res. 39, 1–23 (2009)

    Article  Google Scholar 

  27. Chen, J.S. et al.: Negative differential resistance effect in organic devices based on an anthracene derivative. Appl. Phys. Lett. 89 (2006)

    Google Scholar 

  28. Galperin, M., Ratner, M.A., Nitzan, A.: Hysteresis, switching, and negative differential resistance in molecular junctions: A polaron model. Nano Lett. 5, 125–130 (2005)

    Article  ADS  Google Scholar 

  29. Goto, E. et al.: Esaki diode high-speed logical circuits. IRE. T. Electron. Comp 25–29 (1960)

    Google Scholar 

  30. Kuroyana, N., Inoue, N.: High speed logical circuits combining esaki-diode bistable circuits with emitter follower. Rev. Elec. Commun. Lab 13, 701-& (1965)

    Google Scholar 

  31. Axelrod, M.S., Farber, A.S., Rosenheim, D.E.: Some new high-speed tunnel-diode logic circuits. IBM J. (1962)

    Google Scholar 

  32. Maezawa, K., Mizutani, T.: A new resonant tunneling logic gate employing monostable-bistable transition. Jpn. J. Appl. Phys. 2 Lett. 32, L42–L44 (1993)

    Google Scholar 

  33. Chen, K.J., Maezawa, K., Yamamoto, M.: InP-based high-performance monostable bistable transition logic elements (MOBILE’s) using integrated multiple-input resonant-tunneling devices. IEEE Electr. Dev. L 17, 127–129 (1996)

    Article  ADS  Google Scholar 

  34. Mentovich, E.D., Richter, S.: Post-complementary metal-oxide-semiconductor vertical and molecular transistors: A platform for molecular electronics. Appl. Phys. Lett. 99 (2011)

    Google Scholar 

  35. Mentovich, E.D., Belgorodsky, B., Richter, S.: Resolving the mystery of the elusive peak: negative differential resistance in redox proteins. J. Phys. Chem. Lett. 2, 1125–1128 (2011)

    Article  Google Scholar 

  36. Mentovich, E.D., Belgorodsky, B., Kalifa, I., Richter, S.: 1-nanometer-sized active-channel molecular quantum-dot transistor. Adv. Mater. 22, 2182–2186 (2010)

    Article  Google Scholar 

  37. Mentovich, E.D., Richter, S.: The role of leakage currents and the gate oxide width in molecular transistors. Jpn. J. Appl. Phys. 49 (2010)

    Google Scholar 

  38. D’Amico, P., Ryndyk, D.A., Cuniberti, G., Richter, K.: Charge-memory effect in a polaron model: equation-of-motion method for Green functions. New J. Phys. 10 (2008)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the agency for Tashtiot program and the USAF fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shachar Richter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hakim, R., Mentovich, E.D., Richter, S. (2013). Towards Post-CMOS Molecular Logic Devices. In: Lorente, N., Joachim, C. (eds) Architecture and Design of Molecule Logic Gates and Atom Circuits. Advances in Atom and Single Molecule Machines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33137-4_2

Download citation

Publish with us

Policies and ethics