Skip to main content

Artificial Molecular Nanomagnets as Spin-Based Quantum Logic Gates

  • Conference paper
  • First Online:
Book cover Architecture and Design of Molecule Logic Gates and Atom Circuits

Abstract

Quantum coherence and entanglement give resources to enhance the capabilities of computers well beyond those achievable by present-day or even future classical devices. Quantum information processing can be carried out via a combination of two elementary logic operations: unitary rotations of individual qubits and quantum-gate operations that involve at least two coupled qubits. An outstanding challenge for science and technology is to find suitable realizations of these basic elements. In recent years, magnetic molecular clusters have become candidates to implement the quantum computer hardware. Here, we summarize some of the strategies that have been followed to design and synthesize molecular spin qubits and quantum gates. In particular, we show that molecular clusters containing two Tb3+ ions meet all ingredients required to implement a CNOT quantum logic gate. The definition of control and target qubits is based on the strong magnetic anisotropy and the magnetic inequivalence of the two ions, which can be achieved by chemically engineering dissimilar coordination spheres. The magnetic asymmetry also provides a method to realize a SWAP gate in the same cluster. The synthesis of related molecular structures enables a vast choice of quantum-gate designs. Chemically engineered molecular quantum gates can therefore open promising avenues for the realization of scalable quantum computing architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  3. Deutsch, D.: Quantum-theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97–117 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Shor, P.W.: Polynomial time algorithms for prime factorization and discrete algorithms on a quantum computer. SIAM J. Comput. 26, 1484 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)

    Article  ADS  Google Scholar 

  6. DiVincenzo, D.P.: The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000)

    Article  MATH  Google Scholar 

  7. Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.: Quantum computers. Nature 464, 45–53 (2010)

    Article  Google Scholar 

  8. Cirac, J.I., Zoller, P.: Quantum computation with Cold Trapped Ions. Phys. Rev. Lett. 74, 4091–4094 (1995)

    Article  ADS  Google Scholar 

  9. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

    Article  ADS  Google Scholar 

  10. Gershenfeld, N.A., Chuan, I.L.: Bulk spin-resonance quantum computation. Science 275, 350 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453, 1031–1042 (2008)

    Article  ADS  Google Scholar 

  12. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998)

    Article  ADS  Google Scholar 

  13. Hanson, R., Awschalom, D.D.: Coherent manipulation of single spins in semiconductors. Nature 453, 1043–1049 (2008)

    Article  ADS  Google Scholar 

  14. Sato, K., Nakazawa, S., Rahimi, R., Ise, T., Nishida, S., Yoshino, T., Mori, N., Toyota, K., Shiomi, D., Yakiyama, Y., Morita, Y., Kitagawa, M., Nakasuji, K., Nakahara, M., Hara, H., Carl, P., Hofer, P., Takui, T.: Molecular electron-spin quantum computers and quantum information processing: pulse-based electron magnetic resonance spin technology applied to matter spin-qubits. J. Mater. Chem. 19, 3739–3754 (2009)

    Article  Google Scholar 

  15. Gatteschi, D., Sessoli, R., Villain, J.: Molecular Nanomagnets. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  16. Luis, F.; Repollés, A., Martínez-Pérez, M.J., Aguilà, D., Roubeau, O., Zueco, D., Alonso, P.J., Evangelisti, M., Camón, A., Sesé, J., Barrios, L.A., Aromí, G.: Molecular prototypes for spin-based CNOT and SWAP quantum gates. Phys. Rev. Lett. 107(117203), 1–5 (2011)

    Google Scholar 

  17. Aromí, G., Aguilà, D., Gamez, P., Luis, F., Roubeau, O.: Design of magnetic coordination complexes for quantum computing. Chem. Soc. Rev. 41, 537–546 (2012)

    Article  Google Scholar 

  18. Toffoli, T.: Bicontinuous extensions of invertible combinatorial functions. Math. Syst. Theor. 14, 13–23 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bell, J.: Speakable and unspeakable in quantum mechanics. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  20. Lehmann, J., Gaita-Ariño, A., Coronado, E., Loss, D.: Spin qubits with electrically gated polyoxometalate molecules. Nat. Nanotech. 2, 312 (2007)

    Article  ADS  Google Scholar 

  21. Cirac, J.I., Zoller, P.: Quantum computation with cold trapped ions. Phys. Rev. Lett. 74, 4091 (1995)

    Article  ADS  Google Scholar 

  22. Monroe, C., Meekhof, D.M., King, B.E., Itano, W.M., Wineland, D.J.: Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Chuang, I.L., Vandersypen, L.M.K., Zhou, X. Leung, D.W., Lloyd, S.: Experimental realization of a quantum algorithm. Nature 393, 143 (1998)

    Article  ADS  Google Scholar 

  24. Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453, 1031–1042 (2008)

    Article  ADS  Google Scholar 

  25. Paik, H., Schuster, D.I., Bishop, L.S., Kirchmair, G., Catelani, G., Sears, A.P., Johnson, B.R., Reagor, M.J., Frunzio, L., Glazman, L.I., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys. Rev. Lett. 107, 240501 (2011)

    Article  ADS  Google Scholar 

  26. Plantenberg, J.H., De Groot, P.C., Harmans, C.J.P.M., Mooij, J.E.: Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits. Nature 447, 836–839 (2007)

    Article  ADS  Google Scholar 

  27. Leuenberger, M., Loss, D.: Quantum computing in molecular magnets. Nature 410, 789 (2001)

    Article  ADS  Google Scholar 

  28. Tejada, J., Chudnovsky, E.M., del Barco, E., Hernández, J.M., Spiller, T.P.: Magnetic qubits as hardware for quantum computers. Nanotechnology 12, 181 (2001)

    Article  ADS  Google Scholar 

  29. Meier, F., Levy, J., Loss, D.: Quantum computing with spin cluster qubits. Phys. Rev. Lett. 90, 047901 (2003)

    Article  ADS  Google Scholar 

  30. Troiani, F., Ghirri, A., Affronte, M., Carretta, S., Santini, P., Amoretti, G., Piligkos, S., Timco, G., Winpenny, R.E.P.: Molecular engineering of antiferromagnetic rings for quantum computation. Phys. Rev. Lett. 94, 207208 (2005)

    Article  ADS  Google Scholar 

  31. Matsuda, K., Irie, M.: Photochromism of diarylethenes with two nitronyl nitroxides: Photoswitching of an intramolecular magnetic interaction. Chem. Eur. J. 7, 3466–3473 (2001)

    Article  Google Scholar 

  32. Morita, Y., Yakiyama, Y., Nakazawa, S., Murata, T., Ise, T., Hashizume, D., Shiomi, D., Sato, K., Kitagawa, M., Nakasuji, K., Takui, T.: Triple-stranded metallo-helicates addressable as Lloyd’s electron spin qubits. J. Am. Chem. Soc. 132, 6944–6946 (2010)

    Article  Google Scholar 

  33. Caciuffo, R., Guidi, T., Amoretti, G., Carretta, S., Liviotti, E., Santini, P., Mondelli, C., Timco, G., Muryn, C.A., Winpenny, R.E.P.: Spin dynamics of heterometallic Cr7M wheels (M = Mn, Zn, Ni) probed by inelastic neutron scattering. Phys. Rev. B 71(174407), 1–8 (2005)

    Google Scholar 

  34. Ardavan, A., Rival, O., Morton, J.J.L., Blundell, S.J., Tyryshkin, A.M., Timco, G.A., Winpenny, R.E.P.: Will spin-relaxation times in molecular magnets permit quantum information processing? Phys. Rev. Lett. 98(057201), 1–4 (2007)

    Google Scholar 

  35. Wedge, C.J., Timco, G.A., Spielberg, E.T., George, R.E., Tuna, F., Rigby, S., McInnes, E.J.L., Winpenny, R.E.P., Blundell, S.J., Ardavan, A.: Chemical engineering of molecular qubits. Phys. Rev. Lett. 108, 107204 (2012)

    Article  ADS  Google Scholar 

  36. Timco, G.A., Carretta, S., Troiani, F., Tuna, F., Pritchard, R., Muryn, C.A., McInnes, E.J.L., Ghirri, A., Candini, A., Santini, P., Amoretti, G., Affronte, M., Winpenny, R.E.P.: Engineering the coupling between molecular spin qubits by coordination chemistry. Nat. Nanotech. 4, 173 (2009)

    Article  ADS  Google Scholar 

  37. Bellini, V., Lorusso, G., Candini, A., Wernsdorfer, W., Faust, T.B., Timco, G.A., Winpenny, R.E.P., Affronte, M.: Propagation of spin information at the supramolecular scale through Heteroaromatic linkers. Phys. Rev. Lett. 106(227205), 1–4 (2011)

    Google Scholar 

  38. Candini, A., Lorusso, G., Troiani, F., Ghirri, A., Carretta, S., Santini, P., Amoretti, G., Muryn, C., Tuna, F., Timco, G., McInnes, E.J.L., Winpenny, R.E.P., Wernsdorfer, W., Affronte, M.: Entanglement in supramolecular spin systems of two weakly coupled antiferromagnetic rings (purple-CrNi7). Phys. Rev. Lett. 104(037203), 1–4 (2010)

    Google Scholar 

  39. Hill, S., Edwards, R.S., Aliaga-Alcalde, N., Christou, G.: Quantum coherence in an exchange-coupled dimer of single-molecule magnets. Science 302, 1015–1018 (2003)

    Article  ADS  Google Scholar 

  40. Aromí, G., Brechin, E.K.: Synthesis of 3d metallic single-molecule magnets. Struct. Bond 122, 1–67 (2006)

    Article  Google Scholar 

  41. Sessoli, R., Powell, A.K.: Strategies towards single molecule magnets based on lanthanide ions. Coord. Chem. Rev. 253, 2328–2341 (2009)

    Article  Google Scholar 

  42. Costa, J.S., Barrios, L.A., Craig, G.A., Teat, S.J., Luis, F., Roubeau, O., Evangelisti, M., Camón, A., Aromí, G.: A molecular [Mn14] coordination cluster featuring two slowly relaxing nanomagnets. Chem. Commun. 48, 1413–1415 (2012)

    Article  Google Scholar 

  43. Nguyen, T.N., Wernsdorfer, W., Abboud, K.A., Christou, G.: A supramolecular ggregate of four exchange-biased single-molecule magnets. J. Am. Chem. Soc. 133, 20688–20691 (2011)

    Article  Google Scholar 

  44. Novitchi, G., Costes, J.P., Tuchagues, J.P., Vendier, L., Wernsdorfer, W.: A single molecule magnet (SMM) with a helicate structure. New J. Chem. 32, 197–200 (2008)

    Article  Google Scholar 

  45. Aromí, G., Gamez, P., Reedijk, J.: Poly beta-diketones: Prime ligands to generate supramolecular metalloclusters. Coord. Chem. Rev. 252, 964–989 (2008)

    Article  Google Scholar 

  46. Barrios, L.A., Aguilà, D., Roubeau, O., Gamez, P., Ribas-Ariño, J., Teat, S.J., Aromí, G.: Designed topology and site-selective metal composition in tetranuclear [\({\mathrm{MM}}^{{\prime}}\bullet \bullet \bullet {\mathrm{M}}^{{\prime}}\mathrm{M}\)] linear complexes. Chem. Eur. J. 15, 11235–11243 (2009)

    Article  Google Scholar 

  47. Sañudo, E.C., Cauchy, T., Ruiz, E., Laye, R.H., Roubeau, O., Teat, S.J., Aromí, G.: Molecules composed of two weakly magnetically coupled [Mn(III)4] clusters. Inorg. Chem. 46, 9045–9047 (2007)

    Article  Google Scholar 

  48. Sañudo, E.C., Salinas-Uber, J., Pons-Balagué, A., Roubeau, O., Aromí, G.: Molecular [(Fe3)Fe3)] and [(Fe4)Fe4)] Coordination Cluster Pairs as Single or Composite Arrays. Inorg. Chem. 51, 8441–8446 (2012)

    Article  Google Scholar 

  49. Aguilà, D., Barrios, L.A., Roubeau, O., Teat, S.J., Aromí, G.: Molecular assembly of two [Co(II)4] linear arrays. Chem. Commun. 47, 707–709 (2011)

    Article  Google Scholar 

  50. Inglis, R., Katsenis, A.D., Collins, A., White, F., Milios, C.J., Papaefstathiou, G.S., Brechin, E.K.: Assembling molecular triangles into discrete and infinite architectures. Cryst. Eng. Comm. 12, 2064–2072 (2010)

    Article  Google Scholar 

  51. Eppley, H.J., deVries, N., Wang, S., Aubin, S.M., Tsai, H.L., Folting, K., Hendrickson, D.N., Christou G.: \({[{\mathrm{Mn}}_{3}\mathrm{O}{({\mathrm{O}}_{2}\mathrm{CPh})}_{6}{(\mathrm{py})}_{2}]}_{2}(4,{4}^{{\prime}}\) - bpy) and \([{\mathrm{Mn}}_{9}{\mathrm{O}}_{7}({\mathrm{O}}_{2}{\mathrm{CC}}_{6}{\mathrm{H}}_{4}\) - p - OMe)13 (4, 4 - bpy)]2: new multinuclear manganese complexes. Inorg. Chim. Acta 263, 323–340 (1997)

    Google Scholar 

  52. Bertaina, S., Gambarelli, S., Tkachuk, A., Kurkin, I.N., Malkin, B., Stepanov, A., Barbara, B.: Rare-earth solid-state qubits. Nat. Nanotech. 2, 39–42 (2007)

    Article  ADS  Google Scholar 

  53. Ishikawa, N., Sugita, M., Wernsdorfer, W.: Quantum tunneling of magnetization in lanthanide single-molecule magnets: Bis(phthalocyaninato)terbium and bis(phthalocyaninato)dysprosium anions. Ang. Chem. Int. Ed. 44, 2931 (2005)

    Article  Google Scholar 

  54. AlDamen, M.A., Clemente-Juan, J.M., Coronado, E., Martí-Gastaldo, C., Gaita-Ariño, A.: Mononuclear lanthanide single-molecule magnets based on polyoxometalates. J. Am. Chem. Soc. 130, 8874 (2008)

    Article  Google Scholar 

  55. AlDamen, M.A., Cardona-Serra, S., Clemente-Juan, J.M., Coronado, E., Martí-Gastaldo, C., Luis, F., Montero, O.: Mononuclear lanthanide single molecule magnets based on the polyoxometalates \({[\mathrm{Ln}{({\mathrm{W}}_{5}{\mathrm{O}}_{18})}_{2}]}^{9-}\) and \({[\mathrm{Ln}{({\beta }_{2}\,-\,{\mathrm{SiW}}_{11}{\mathrm{O}}_{39})}_{2}]}^{13-}({\mathrm{Ln}}^{\mathrm{III}}\,=\,\mbox{ Tb, Dy, Ho, Er,}\mbox{ Tm, and Yb})\). Inorg. Chem. 48, 3467 (2009)

    Article  Google Scholar 

  56. Luis, F., Martínez-Pérez, M.J., Montero, O., Coronado, E., Cardona-Serra, S., Martí-Gastaldo, C., Clemente-Juan, J.M., Sesé, J., Drung, D., Schurig, T.: Spin-lattice relaxation via quantum tunneling in an Er3 + -polyoxometalate molecular magnet. Phys. Rev. B 82, 060403 (2010)

    Article  ADS  Google Scholar 

  57. Setyawati, I.A., Liu, S., Rettig, S.J., Orvig, C.: Homotrinuclear lanthanide(III) arrays: Assembly of and conversion from mononuclear and dinuclear units. Inorg. Chem. 39, 496–507 (2000)

    Article  Google Scholar 

  58. Piggot, P.M.T., Hall, L.A., White, A.J.P., Williams, D.J.: Attempted syntheses of lanthanide(III) complexes of the anisole- and anilinosquarate ligands. Inorg. Chem. 42, 8344–8352 (2003)

    Article  Google Scholar 

  59. Evans, W.J., Greci, M.A., Ziller, J.W.: Chem. Commun. 2367–2368 (1998)

    Google Scholar 

  60. Aguilà, D., Barrios, L.A., Luis, F., Repollés, A., Roubeau, O., Teat, S.J., Aromí, G.: Synthesis and properties of a family of unsymmetric dinuclear complexes of \({\mathrm{Ln}}^{\mathrm{III}}(\mathrm{Ln} = \mbox{ Eu, Gd, Tb})\). Inorg. Chem. 49, 6784–6786 (2010)

    Article  Google Scholar 

  61. García-Palacios, J.L., Gong, J.B., Luis, F.: Equilibrium susceptibilities of superparamagnets: longitudinal and transverse, quantum and classical. J. Phys. Condens. Matter 21, 456006 (2009)

    Article  ADS  Google Scholar 

  62. Santini, P., Carretta, S., Troiani, F., Amoretti, G.: Molecular nanomagnets as quantum simulators. Phys. Rev. Lett. 107, 230502 (2011)

    Article  ADS  Google Scholar 

  63. Urdampilleta, M., Klyatskaya, S., Cleuziou, J.P., Ruben, M., Wernsdorfer, W.: Supramolecular spin valves. Nat. Mater. 10, 502 (2011)

    Article  ADS  Google Scholar 

  64. Imamoglu, A.: Cavity QED based on collective magnetic dipole coupling: spin ensembles as hybrid two-level systems. Phys. Rev. Lett. 102, 083602 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partly funded by grants MAT2009–13977-C03 (MOLCHIP), CTQ2009–06959, FIS2008–01240 and FIS2009–13364-C02, from the Spanish MICINN and the Consolider-Ingenio project on molecular nanoscience. Funding from the European Research Council Starting Grant FuncMolQIP (to GA) is also acknowledged. G. A. acknowledges Generalitat de Catalunya for the ICREA Academia prize 2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Luis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Luis, F., Roubeau, O., Aromí, G. (2013). Artificial Molecular Nanomagnets as Spin-Based Quantum Logic Gates. In: Lorente, N., Joachim, C. (eds) Architecture and Design of Molecule Logic Gates and Atom Circuits. Advances in Atom and Single Molecule Machines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33137-4_19

Download citation

Publish with us

Policies and ethics