Advertisement

A Controlled Quantum SWAP Logic Gate in a 4-center Metal Complex

  • Mohamed HliwaEmail author
  • Jacques Bonvoisin
  • Christian Joachim
Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)

Abstract

A monomolecular four center low spin paramagnetic organometallic complex is proposed and theoretically studied to work as a controlled quantum swap molecule logic gate. The magnetic super-exchange interaction between the 2 intramolecular qubits depends on the oxydation state of a third intermediate center itself controlled by an intervalence electron transfer process. A model system is build up using entangled spin qubits in the framework of an Heisenberg-Dirac-Van Vleck like spin Hamiltonian demonstrating the effective swapping operation of this complex.

Keywords

Control Site Spin Exchange Organometallic Complex Magnetic Site Electron Spin State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors like to thank MANA for financial support via the WPI Program.

References

  1. 1.
    Stadler, R., Ami, S., M. Forshaw, M., Joachim, C.: Integrating logic functions inside a single molecule. Nanotechnology 15, S115 (2004).Google Scholar
  2. 2.
    Carter, F.L.: Molecular Electronic Devices II. ed. Dekker, New York (1987) : The molecular device computer : Point of departure for large scale cellular automata. Physica D10, 175 (1984).Google Scholar
  3. 3.
    Jlidat, N., Hliwa, M., Joachim, C.: A semi-classical XOR logic gate in a single molecule. Chem. Phys. Lett. 451, 270 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    Duchemin, I., Renaud, N., Joachim, C.: An intermolecular 1/2-adder with tunneling current drive and read-outs. Chem. Phys. Lett. 452, 269 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    Feng, M., Twamley, J.: Single spin detection by qubit swap to molecular nanomagnet. Europhys. Lett. 69, 699 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    Duchemin, I., Joachim, C.: A quantum digital half adder inside a single molecule. Chem. Phys. Lett. 406, 167 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    Bertaina, S., Gambarelli, S., Mitra, T, Tsukerblat, B., M üller, A., Barbara, B.: Quantum oscillations in a molecular magnet. Nature 453, 203 (208).Google Scholar
  8. 8.
    Liu, J., Zhang, G.-F., Chen, Z.-Y.: Influence of magnetic field on swap operation in Heisenberg XXZ model. Physica B 404, 1116 (2009).Google Scholar
  9. 9.
    Fabre, M., Jaud, J., Hliwa, M., Launay, J.-P., Bonvoisin, J.: On the role of the bridging dicyanamidobenzene ligand in a new binuclear ruthenium complexe. Inorg. Chem. 45, 9332 (2006).CrossRefGoogle Scholar
  10. 10.
    Fabre, M., Bonvoisin, J.: Electronic and magnetic communication in mixed-valent and homovalent ruthenium complexes containing phenylcyanamide type bridging ligands. J. Am. Chem. Soc. 129, 1434 (2007).CrossRefGoogle Scholar
  11. 11.
    Munery, S., Ratel-Ramond, N., Benjalal, Y., Vernisse, L., Guillermet, O., Bouju, X., Coratger, R., Bonvoisin, J.: Synthesis and characterization of a series of ruthenium tris(β-diketonato) complexes by an UHV-STM investigation and numerical calculations. Eur. J. Inorg. Chem. 2698 (2011).Google Scholar
  12. 12.
    Viala, C., Bonvoisin, J.: Synthesis and characterization of β-diketonato ruthenium(II) complexes with two 4-bromo or protected 4-ethynyl-2,2’-bipyridine ligands. Inorg. chim. Acta 363, 1409 (2010).CrossRefGoogle Scholar
  13. 13.
    Munery, S., Jaud, J., Bonvoisin, J.: Synthesis and characterization of bis(bipyridine) ruthenium(II) complexes with bromo and protected ethynyl β-diketonato ligands. Inorg. Chem. Commun. 11, 975 (2008).CrossRefGoogle Scholar
  14. 14.
    Journeaux, Y., Sletten, J., Kahn, O.: Tunable interaction in (μ-oxamido) copper(II) binuclear complexes. Inorg. Chem. 25, 439 (1986).CrossRefGoogle Scholar
  15. 15.
    Heisenberg, W.: Zur theorie des ferromagnetismus. Z. Phys. 49, 619 (1928).ADSzbMATHCrossRefGoogle Scholar
  16. 16.
    Dirac, P.A.M.: Quantum mechanics of many-electron systems. Proc. R. Soc. London A123, 714 (1929).ADSGoogle Scholar
  17. 17.
    Van Vleck, J.H.: The theory of electric and magnetic susceptibility. Oxford University Press, Oxford (1932).Google Scholar
  18. 18.
    Calzado, C.J., Cabrero, J., Malrieu, J.-P., Caballol, R.: Analysis of magnetic coupling in binuclear complexes. I and II- derivation of valence effective Hamiltonian from ab-inition CI and DFT calculations. J. Chem. Phys. 116, 2728 (2002), J. Chem. Phys. 116, 3985 (2002).Google Scholar
  19. 19.
    Doublet, M.-L., Lepetit, M.-B.: Correlation and dimerization effects on the physical behaviour of \(N{R}_{4}{[Ni{(\mathit{dmit})}_{2}]}_{2}\) charge transfer salts : density matrix renormalization group study of the quarter-filling t-J model. J. Chem. Phys. 110, 1767 (1999).ADSCrossRefGoogle Scholar
  20. 20.
    Capelle, K., Libero, V.-L.: Spin density functional theory : Some open problems and application to inhomogeneous Heisenberg model. Int. J. Quant. Chem. 105, 679 (2005).ADSCrossRefGoogle Scholar
  21. 21.
    Durand, Malrieu, J.-P.: Effective Hamiltonian and pseudo-operators as tools for rigorous modelling. Adv. Chem. Phys. 67, 321 (1987).Google Scholar
  22. 22.
    M.A.S. Aquino, M.A.S., Lee, F., Gabe, L.E.J., Bensimon, C., Greedan, J.E., Crutchley, R.J.: Superexchange metal-metal coupling in dinuclear pentaamine rethenium complexes incorporating a 1,4-dicyanamidobenzene dianion bridging ligand. J. Am. Chem. Soc. 114, 5130 (1992).Google Scholar
  23. 23.
    Rugar, D., Budakian, R., Mamin, R.J.: Single spin detection by magnetic resonance force microscopy. Nature 430, 329 (2004).ADSCrossRefGoogle Scholar
  24. 24.
    Messina, P., Mannini, M., Caneschi, A., Gatteschi, D., Sorace, L., Sigalotti, P., Sandrin, C., Prato, S., Pittana, P., Manassen, Y.: Spin noise fluctuation from paramagnetic molecular adsorbate on surfaces. J. Appl. Phys. 101, 053916 (2007).ADSCrossRefGoogle Scholar
  25. 25.
    Heinrich, A.J., Gupta, J.A., Lutz, C.P., Eigler, D.M.: Single atom-flip spectroscopy. Science 306, 466 (2004).ADSCrossRefGoogle Scholar
  26. 26.
    Iacovita, C., Rastei, M.V., Heinrich, B.W., Brumme, T., Kortus, J., Limot, L., Bucher, J.-P.: Visualizing the spin of individual cobalt-phthalocyanine molecule. Phys. Rev. Lett. 101, 116622 (2008).ADSCrossRefGoogle Scholar
  27. 27.
    Meier, F., Zhou, L., Wiebe, J., Wiesendanger, R.: Revealing magnetic interactions from single-atom magnetization curves. Science 320, 82 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mohamed Hliwa
    • 1
    • 2
    Email author
  • Jacques Bonvoisin
    • 2
  • Christian Joachim
    • 2
  1. 1.Faculty of Sciences Ben M’SikUniversity Hassan II-Mohammedia-CasablancaCasablancaMaroc.
  2. 2.Nanoscience Groupe and MANA Satellite, CEMES/CNRSToulouseFrance

Personalised recommendations