Moment-Based Boundary Conditions for Lattice Boltzmann Magnetohydrodynamics

  • P. J. Dellar
Conference paper

Abstract

We present a moment-based approach for implementing boundary conditions in a lattice Boltzmann formulation of magnetohydrodynamics. Hydrodynamic quantities are represented using a discrete set of distribution functions that evolve according to a cut-down form of Boltzmann’s equation from continuum kinetic theory. Electromagnetic quantities are represented using a set of vector-valued distribution functions. The nonlinear partial differential equations of magnetohydrodynamics are thus replaced by two constant-coefficient hyperbolic systems in which all nonlinearities are confined to algebraic source terms. Further discretising these systems in space and time leads to efficient and readily parallelisable algorithms. However, the widely used bounce-back boundary conditions place no-slip boundaries approximately half-way between grid points, with the precise position being a function of the viscosity and resistivity. Like most lattice Boltzmann boundary conditions, bounce-back is inspired by a discrete analogue of the diffuse and specular reflecting boundary conditions from continuum kinetic theory. Our alternative approach using moments imposes no-slip boundary conditions precisely at grid points, as demonstrated using simulations of Hartmann flow between two parallel planes.

References

  1. 1.
    Bennett, S.: A lattice Boltzmann model for diffusion of binary gas mixtures. Ph.D. thesis, University of Cambridge (2010). http://www.dspace.cam.ac.uk/handle/1810/226851.
  2. 2.
    Bennett, S., Asinari, P., Dellar, P.J.: A lattice Boltzmann model for diffusion of binary gas mixtures that includes diffusion slip. Int. J. Numer. Meth. Fluids. 69, 171–189 (2012).MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Biskamp, D.: Nonlinear Magnetohydrodynamics. Cambridge University Press, Cambridge (1993).CrossRefGoogle Scholar
  4. 4.
    Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-Uniform Gases, 3rd edn. Cambridge University Press, Cambridge (1970).Google Scholar
  5. 5.
    Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998).MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dellar, P.J.: Lattice kinetic schemes for magnetohydrodynamics. J. Comput. Phys. 179, 95–126 (2002).MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Dellar, P.J.: Incompressible limits of lattice Boltzmann equations using multiple relaxation times. J. Comput. Phys. 190, 351–370 (2003).MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Dellar, P.J.: An interpretation and derivation of the lattice Boltzmann method using Strang splitting. Comput. Math. Applic. (2011). Published online, doi:10.1016/j.camwa.2011.08.047.Google Scholar
  9. 9.
    Dellar, P.J.: Lattice Boltzmann formulation for Braginskii magnetohydrodynamics. Computers & Fluids 46, 201–205 (2011).MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    d’Humières, D., Ginzburg, I.: Viscosity independent numerical errors for Lattice Boltzmann models: From recurrence equations to “magic” collision numbers. Comput. Math. Applic. 58, 823–840 (2009).Google Scholar
  11. 11.
    Ginzbourg, I., Adler, M.P.: Boundary flow condition analysis for the three-dimensional lattice Boltzmann model. J. Phys. II France 4, 191–214 (1994).CrossRefGoogle Scholar
  12. 12.
    He, X., Chen, S., Doolen, G.D.: A novel thermal model of the lattice Boltzmann method in incompressible limit. J. Comput. Phys. 146, 282–300 (1998).MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    He, X.Y., Zou, Q.S., Luo, L.S., Dembo, M.: Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model. J. Statist. Phys. 87, 115–136 (1997).MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media. Pergamon, Oxford (1960). 2nd edition 1984.Google Scholar
  15. 15.
    Pattison, M., Premnath, K., Morley, N., Abdou, M.: Progress in lattice Boltzmann methods for magnetohydrodynamic flows relevant to fusion applications. Fusion Eng. Design 83, 557–572 (2008).CrossRefGoogle Scholar
  16. 16.
    Qian, Y.H., d’Humières, D., Lallemand, P.: Lattice BGK models for the Navier–Stokes equation. Europhys. Lett. 17, 479–484 (1992).Google Scholar
  17. 17.
    Riley, B., Richard, J., Girimaji, S.S.: Assessment of magnetohydrodynamic lattice Boltzmann schemes in turbulence and rectangular jets. Int. J. Mod. Phys. C 19, 1211–1220 (2008).MATHCrossRefGoogle Scholar
  18. 18.
    Succi, S.: The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond. Oxford University Press, Oxford (2001).MATHGoogle Scholar
  19. 19.
    Vahala, G., Keating, B., Soe, M., Yepez, J., Vahala, L., Carter, J., Ziegeler, S.: MHD turbulence studies using lattice Boltzmann algorithms. Commun. Comput. Phys. 4, 624–646 (2008).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • P. J. Dellar
    • 1
  1. 1.Mathematical InstituteUniversity of OxfordOxfordUK

Personalised recommendations