Skip to main content

Adaptive Geometrical Multiscale Modeling for Hydrodynamic Problems

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications 2011

Abstract

Hydrodynamic problems often feature geometrical configurations that allow a suitable dimensional model reduction. One-dimensional models may be sometimes accurate enough for describing a dynamic of interest. In other cases, localized relevant phenomena require more precise models. To improve the computational efficiency, geometrical multiscale models have been proposed, where reduced (1D) and complete (2D–3D) models are coupled in a unique numerical solver. In this paper we consider an adaptive geometrical multiscale modeling: the regions of the computational domain requiring more or less accurate models are automatically and dynamically selected via a heuristic criterion. To the best of our knowledge, this is a first example of automatic geometrical multiscale model reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Colella, P.: Multidimensional upwind methods for hyperbolic conservation laws. J. Comput. Phys. 87, 171–200 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cardiovascular Mathematics, Modeling and Simulation of the Circulatory System. Formaggia, L., Quarteroni, A., Veneziani, A. (eds.), Springer, Milano (2009)

    Google Scholar 

  3. Krámer, T., Józsa, J.: Solution-adaptivity in modelling complex shallow flows. Computers & Fluids 36, 562–577 (2007)

    Article  MATH  Google Scholar 

  4. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge, (2001).

    Google Scholar 

  5. LeVeque, R.J.: Clawpack, Version 4.3. http://depts.washington.edu/clawpack/clawpack-4.3/

  6. Mauri, L., Perotto, S., Veneziani, A.: An adaptive geometrical multiscale model for the shallow water equations. In preparation (2012)

    Google Scholar 

  7. Miglio, E., Perotto, S., Saleri, F.: Model coupling techniques for free-surface flow problems. Part I. Nonlinear Analysis, 63, 1885–1896 (2005)

    Article  Google Scholar 

  8. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sleigh, P.A., Berzins, M., Gaskell, P.H., Wright, N.G.: An unstructured finite volume algorithm for predicting flow in rivers and estuaries. Computers & Fluids 27, 479–508 (1998)

    Article  MATH  Google Scholar 

  10. Vreugdenhil, C.B.:Numerical Methods for Shallow-Water Flow. Springer, (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Mauri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mauri, L., Perotto, S., Veneziani, A. (2013). Adaptive Geometrical Multiscale Modeling for Hydrodynamic Problems. In: Cangiani, A., Davidchack, R., Georgoulis, E., Gorban, A., Levesley, J., Tretyakov, M. (eds) Numerical Mathematics and Advanced Applications 2011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33134-3_76

Download citation

Publish with us

Policies and ethics