Skip to main content

Application of the Level-Set Method to a Mixed-Mode and Curvature Driven Stefan Problem

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications 2011
  • 2056 Accesses

Abstract

This study focuses on the dissolution and growth of small possibly initially non-smooth particles within a diffusive phase. The dissolution or growth of the particle is assumed to be affected by concentration gradients of a single chemical element within the diffusive phase at the particle boundary caused by diffusion and by an interface reaction. The combined formulation results in a mixed-mode formulation. The moving boundary problem is solved using a level-set method and finite-element techniques such as SUPG. The appropriate meshes are derived using a fixed background mesh and the level-set function. We experimentally show that these techniques give mass-conserving solutions in the limit of infinite resolution, give a linear experimental order of convergence, can handle arbitrary particles and give the possibility to incorporate surface tensions using the Gibbs-Thomson effect and the local curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Crank, Free and moving boundary problems (Clarendon Press, Oxford, 1984)

    Google Scholar 

  2. A. Deschamps, Y. Brechet, Acta Mater. 47

    Google Scholar 

  3. R. Kampmann, R. Wagner, Materials Science and Technology – A Comprehensive Treatment, vol. 5 (VCH, Weinheim, 1991)

    Google Scholar 

  4. W.W. Mullins, R.F. Sekerka, J. Appl. Phys. 34

    Google Scholar 

  5. S.J. Osher, R.P. Fedkiw, R.P., Level Set Methods and Dynamic Implicit Surfaces (Springer, Netherlands, 2002)

    Google Scholar 

  6. S.J. Osher, J.A. Sethian, J. Comput. Phys. 79

    Google Scholar 

  7. D. den Ouden, F.J. Vermolen, L. Zhao, C. Vuik, J. Sietsma, Comp. Mater. Sci. 50

    Google Scholar 

  8. D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd edn. (Chapmann & Hall, London, 1992)

    Google Scholar 

  9. J.D. Robson, Mater. Sci. Technol. 20

    Google Scholar 

  10. A. Segal, C. Vuik, F.J. Vermolen, J. Comp. Phys. 141

    Google Scholar 

  11. F. Soisson, A. Barbu, G. Martin, Acta Mater. 44

    Google Scholar 

  12. M. Sussman, P. Smereka, S. Osher, J. Comput. Phys. 114

    Google Scholar 

  13. F.J. Vermolen, E. Javierre, C. Vuik, L. Zhao, S. van der Zwaag, Comp. Mater. Sci. 39

    Google Scholar 

  14. X. Xing, P. Wei, M.Y. Wang, Int. J. Numer. Meth. Eng. 82

    Google Scholar 

Download references

Acknowledgements

This research was carried out under the project number M41.5.09341 in the framework of the Research Program of the Materials innovation institute M2i (www.m2i.nl).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. den Ouden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ouden, D.d., Vermolen, F.J., Zhao, L., Vuik, C., Sietsma, J. (2013). Application of the Level-Set Method to a Mixed-Mode and Curvature Driven Stefan Problem. In: Cangiani, A., Davidchack, R., Georgoulis, E., Gorban, A., Levesley, J., Tretyakov, M. (eds) Numerical Mathematics and Advanced Applications 2011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33134-3_15

Download citation

Publish with us

Policies and ethics