Skip to main content

MORPH-PRO: A Novel Algorithm and Web Server for Protein Morphing

  • Conference paper
Book cover Algorithms in Bioinformatics (WABI 2012)

Abstract

Proteins are known to be dynamic in nature, changing from one conformation to another while performing vital cellular tasks. It is important to understand these movements in order to better understand protein function. At the same time, experimental techniques provide us with only single snapshots of the whole ensemble of available conformations. Computational protein morphing provides a visualization of a protein structure transitioning from one conformation to another by producing a series of intermediate conformations. We present a novel, efficient morphing algorithm, Morph-Pro based on linear interpolation. We also show that apart from visualization, morphing can be used to provide plausible intermediate structures. We test intermediate structures constructed by our algorithm for a protein kinase and evaluate these structures in a virtual docking experiment. The structures are shown to dock with higher score to known ligands than structures solved using X-Ray crystallography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Research 28(1), 235–242 (2000)

    Article  Google Scholar 

  2. Echols, N., Milburn, D., Gerstein, M.: Molmovdb: analysis and visualization of conformational change and structural flexibility. Nucleic Acids Research, 478–482 (2003)

    Google Scholar 

  3. Kim, M.K., Jernigan, R.L., Chirikjian, G.S.: Efficient generation of feasible pathways for protein conformational transitions. Biophys. J. 83, 1620–1630 (2002)

    Article  Google Scholar 

  4. Kim, M.K., Chirikjian, G.S., Jernigan, R.L.: Elastic models of conformational transitions in macromolecules. J. Mol. Graph. Model. 21, 151–160 (2002)

    Article  Google Scholar 

  5. Franklin, J., Koehl, P., Doniach, S., Delarue, M.: Minactionpath: maximum likelihood trajectory for large-scale structural transitions in a coarse-grained locally harmonic energy landscape. Nucleic Acids Research, 477–482 (2007)

    Google Scholar 

  6. Ahmed, A., Gohlke, H.: Multiscale modeling of macromolecular conformational changes combining concepts from rigidity and elastic network theory. Proteins 63, 1038–1051 (2006)

    Article  Google Scholar 

  7. Yang, L., Song, G., Jernigan, R.L.: How well can we understand large-scale protein motions using normal modes of elastic network models? Biophys. J. 93, 920–929 (2007)

    Article  Google Scholar 

  8. Krebs, W.G., Gerstein, M.: The morph server: a standardized system for analyzing and visualizing macromolecular motions in a database framework. Nucleic Acids Res. 28, 1665–1675 (2000)

    Article  Google Scholar 

  9. Duan, Y., Kollman, P.A.: Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science 282(5389), 740–744 (1998)

    Article  Google Scholar 

  10. Amato, N.M., Song, G.: Using motion planning to study protein folding pathways. Journal of Computational Biology 9(2), 149–168 (2002)

    Article  Google Scholar 

  11. Apaydin, M.S., Brutlag, D.L., Guestrin, C., Hsu, D., Latombe, J.C., Varma, C.: Stochastic roadmap simulation: an efficient representation and algorithm for analyzing molecular motion. Journal of Computational Biology 10(3-4), 257–281 (2003)

    Article  Google Scholar 

  12. Raveh, B., Enosh, A., Schueler-Furman, O., Halperin, D.: Rapid sampling of molecular motions with prior information constraints. PLoS Comput. Biol. 5(2), e1000295 (2009)

    Google Scholar 

  13. Teodoro, M.L., Kavraki, L.E.: Conformational flexibility models for the receptor in structure based drug design. Curr. Pharm. Des. 9, 1635–1648 (2003)

    Article  Google Scholar 

  14. Carlson, H.A.: Protein flexibility and drug design: how to hit a moving target. Curr. Opin. Chem. Biol. 6, 447–452 (2002)

    Article  Google Scholar 

  15. Knegtel, R.M., Kuntz, I.D., Oshiro, C.M.: Molecular docking to ensembles of protein structures. J. Mol. Biol. 266, 424–440 (1997)

    Article  Google Scholar 

  16. Craig, I.R., Essex, J.W., Spiegel, K.: Ensemble docking into multiple crystallographically derived protein structures: an evaluation based on the statistical analysis of enrichments. J. Chem. Inf. Model 50, 511–524 (2010)

    Article  Google Scholar 

  17. Goh, C.S., Milburn, D., Gerstein, M.: Conformational changes associated with protein-protein interactions. Current Opinion in Structural Biology 14(1), 104–109 (2004)

    Article  Google Scholar 

  18. Taketomi, H., Ueda, Y., Go, N.: Studies on protein folding, unfolding and fluctuations by computer simulation. International Journal of Peptide and Protein Research 7(6), 445–459 (1975)

    Article  Google Scholar 

  19. Lau, K.F., Dill, K.A.: A lattice statistical mechanics model of the conformational and sequence spaces of proteins. Macromolecules 22(10), 3986–3997 (1989)

    Article  Google Scholar 

  20. Sali, A., Shakhnovich, E., Karplus, M.: How does a protein fold? Nature 369, 248–251 (1994)

    Article  Google Scholar 

  21. Weiss, D.R., Levitt, M.: Can morphing methods predict intermediate structures? J. Mol. Biol. 385, 665–674 (2009)

    Article  Google Scholar 

  22. Walters, W.P., Stahl, M.T., Murco, M.A.: Cheminform abstract: Virtual screening-an overview. ChemInform 29(38), 160–178 (1998)

    Google Scholar 

  23. Teague, S.J.: Implications of protein flexibility for drug discovery. Nat. Rev. Drug. Discov. 2, 527–541 (2003)

    Article  Google Scholar 

  24. Wei, B.Q., Weaver, L.H., Ferrari, A.M., Matthews, B.W., Shoichet, B.K.: Testing a flexible-receptor docking algorithm in a model binding site. J. Mol. Biol. 337, 1161–1182 (2004)

    Article  Google Scholar 

  25. Broughton, H.B.: A method for including protein flexibility in protein-ligand docking: improving tools for database mining and virtual screening. J. Mol. Graph. Model. 18, 247–257 (2000)

    Article  Google Scholar 

  26. Holm, L., Sander, C.: Database algorithm for generating protein backbone and side-chain co-ordinates from a c alpha trace application to model building and detection of co-ordinate errors. Journal of Molecular Biology 218(1), 183–194 (1991)

    Article  Google Scholar 

  27. Guex, N., Peitsch, M.C.: Swiss-model and the swiss-pdbviewer: an environment for comparative protein modeling. Electrophoresis 18(15), 2714–2723 (1997)

    Article  Google Scholar 

  28. Jones, G., Willett, P., Glen, R.C., Leach, A.R., Taylor, R.: Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology 267(3), 727–748 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Castellana, N.E. et al. (2012). MORPH-PRO: A Novel Algorithm and Web Server for Protein Morphing. In: Raphael, B., Tang, J. (eds) Algorithms in Bioinformatics. WABI 2012. Lecture Notes in Computer Science(), vol 7534. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33122-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33122-0_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33121-3

  • Online ISBN: 978-3-642-33122-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics