Advertisement

Market Analysis Background and Related Work

  • Antonio M. L. Canelas
  • Rui F. M. M. Neves
  • Nuno C. G. Horta
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

In this chapter some fundamental concepts, necessary to understand the developed work, are addressed, particularly the domain relative to financial markets and time series analysis. Furthermore several methodologies applied to market investment and especially to pattern detection are presented. Finally an introduction to the SAX representation method will be presented and previous works using this methodology will be discussed.

Keywords

Technical Analysis Fundamental Analysis Perceptually Important Points (PIP) Symbolic Aggregate Approximation (SAX) Pattern Recognition Pattern Discovery 

References

  1. 1.
    B. Baumohl, The Secrets of Economic Indicators: Hidden Clues to Future Economic Trends and Investment Opportunities, 2nd edn. (Wharton School Publishing, Pennsylvania, 2007)Google Scholar
  2. 2.
    S.B. Achelis, Technical Analysis From A-To-Z. (Vision Books, New Delhi, 2000)Google Scholar
  3. 3.
    T.N. Bulkowski, Encyclopedia of Chart Patterns, 2nd edn. (Wiley, New Jersey, 2005)Google Scholar
  4. 4.
    R. Fischer, J. Fischer, Candlesticks, Fibonacci, and Chart Pattern Trading Tools: A Synergistic Strategy to Enhance Profits and Reduce Risk. (Wiley, New Jersey, 2003)Google Scholar
  5. 5.
    R.W. Colby, The Encyclopedia of Technical Market Indicators, 2nd edn. (McGraw-Hill, New York, 2003)Google Scholar
  6. 6.
    E. Ponsi, Forex Patterns & Probabilities—Trading Strategies for Trending and Range-Bound Markets. (Wiley Trading, Wiley, New Jersey, 2007)Google Scholar
  7. 7.
    P. Parracho, R. Neves, N. Horta, Trading with optimized uptrend and downtrend pattern templates using a genetic algorithm kernel. IEEE Congr. Evol. Comput. 1895–1901 (2011). doi: 10.1109/CEC.2011.5949846
  8. 8.
    T.-C. Fu, A review on time series data mining. Int. J Eng. Appl. Artif. Intell. 24(3), 164–181 (2011). ISSN 0952-1976. doi: 10.1016/j.engappai.2010.09.007
  9. 9.
    F.-L. Chung, T.-C. Fu, R. Luk, V. Ng, Flexible time series pattern matching based on perceptually important points. Int. Jt. Conf. Artif. Intell. Workshop on Learn from Temporal and Spatial Data, 1–7 (2001)Google Scholar
  10. 10.
    T.-C. Fu, F.-L. Chung, R. Luk, C.M. Ng, Representing financial time series based on data point importance. Eng. Appl. Artif. Intell. 21(2):277–300 (2008). ISSN 0952-1976. doi: 10.1016/j.engappai.2007.04.009 Google Scholar
  11. 11.
    F.-L. Chung, T.-C Fu, V. Ng, R.W.P Luk, An evolutionary approach to pattern-based time series segmentation. IEEE Trans. Evol. Comput. 8(5), 471–489 (2004). doi: 10.1109/TEVC.2004.832863 Google Scholar
  12. 12.
    T.-C. Fu, F.-L. Chung, R. Luk, V. Ng, Pattern discovery from stock time series using self-organizing maps. The 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2001)Google Scholar
  13. 13.
    W. Leigh, , N. Modani, R. Purvis, T. Roberts, Stock market trading rule discovery using technical charting heuristics. Expert Sys. Appl. 23(2), 155–159 (2002). ISSN 0957-4174. doi: 10.1016/S0957-4174(02)00034-9
  14. 14.
    W. Leigh, N. Paz, R. Purvis, Market timing: a test of a charting heuristic. Econ. Lett. 77(1), 55–63 (2002). ISSN 0165-1765. doi: 10.1016/S0165-1765(02)00110-6
  15. 15.
    W. Leigh, C.J. Frohlich, S. Hornik, , R.L. Purvis, , T.L. Roberts, Trading with a stock chart heuristic. IEEE Trans. Part A: Sys. Hum. Sys. Man Cybern. 38(1), 93–104 (2008). doi: 10.1109/TSMCA.2007.909508 Google Scholar
  16. 16.
    W. Leigh, M. Paz, R. Purvis, An analysis of a hybrid neural network and pattern recognition technique for predicting short-term increases in the NYSE composite index. Omega, Elsevier 30, 69–76 (2002)Google Scholar
  17. 17.
    W. Leigh, R. Purvis, J.M. Ragusa, Forecasting the NYSE composite index with technical analysis, pattern recognizer, neural network, and genetic algorithm: a case study in romantic decision support. J Decis. Support Sys. 32(4), 361–377 (2002). doi: 10.1016/S0167-9236(01)00121-X CrossRefGoogle Scholar
  18. 18.
    K. Matsui, H. Sato, Neighborhood evaluation in acquiring stock trading strategy using genetic algorithms. The International Conference on Soft Computing and Pattern Recognition (SoCPaR), pp. 369–372 (2010). doi: 10.1109/SOCPAR.2010.5686733
  19. 19.
    J. Pinto, R. Neves, N. Horta, Fitness function evaluation for MA trading strategies based on genetic algorithms. ed. by N. Krasnogor. Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation (GECCO ‘11). ACM, New York, NY, USA, pp. 819–820 (2011). doi: 10.1145/2001858.2002105
  20. 20.
    L. Wang, Q. Wang, Stock market prediction using artificial neural networks based on HLP. Int. Conf. Intel. Hum. Mach. Sys. Cybern. 1, 116–119 (2011). doi: 10.1109/IHMSC.2011.34
  21. 21.
    L.J. Cao, F.E.H. Tay, Support vector machine with adaptive parameters in financial time series forecasting. IEEE Trans. Neural Netw. 14(6), 1506–1518 (2003). doi: 10.1109/TNN.2003.820556 CrossRefGoogle Scholar
  22. 22.
    D. Zhang, H. Song, P. Chen, Stock market forecasting model based on a hybrid ARMA and support vector machines. Proceedings of the 15th International Conference on Management Science and Engineering, Long Beach, USA (2008)Google Scholar
  23. 23.
    J. Lin, E. Keogh, S. Lonardi, B. Chiu, A symbolic representation of time series, with implications for streaming algorithms. Proceedings of the 8th ACM SIGMOD International Conference on Management of Data, Workshop on Res. Issues in Data Mining and Knowledge Discovery, pp. 2–11 (2003). doi: 10.1145/882082.882086
  24. 24.
    J. Lin, E. Keogh, S. Lonardi, P. Patel, Finding motifs in time series. Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . 2nd Workshop on Temporal Data Mining, pp. 53–68 (2002)Google Scholar
  25. 25.
    C. Faloutsos, M. Ranganathan, Y. Manolopoulos, Fast subsequence matching in time-series databases. Proceedings of the ACM SIGMOD International Conference on Management of Data, Minneapolis, pp. 419–429 (1994). doi: 10.1145/191839.191925
  26. 26.
    E. Keogh, K. Chakrabarti, M. Pazzani, S. Mehrotra, Dimensionality reduction for fast similarity search in large time series databases. J Knowl. nf. Sys. (2000). doi: 10.1145/191839.191925 Google Scholar
  27. 27.
    J. Lin, E. Keogh, L. Wei, S. Lonardi, Experiencing SAX: A novel symbolic representation of time series. Data Min. Knowl. Discov. 15(2), 107–144 (2007). doi: 10.1007/s10618-007-0064-z
  28. 28.
    J. Shieh, K. Keogh, iSAX: Indexing and mining terabyte sized time series. Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, pp. 623–631 (2008). doi: 10.1145/1401890.1401966
  29. 29.
    A. Camerra, T. Palpanas, J. Shieh, E. Keogh, iSAX 2.0: Indexing and mining one billion time series. Proceedings of the 2010 IEEE International Conference Data Mining (ICDM ‘10). IEEE Computer Society, Washington, DC, USA, pp. 58–67 (2010). doi: 10.1109/ICDM.2010.124
  30. 30.
    B. Lkhagva, Y. Suzuki, K. Kawagoe, New time series data representation ESAX for financial applications. Proceedings of the 22nd International Conference Data Engineering Workshops (ICDEW ‘06), p. 115 (2006). doi: 10.1109/ICDEW.2006.99
  31. 31.
    J.-L. Wang, S.-H. Chan, Stock market trading rule discovery using pattern recognition and technical analysis. Expert Sys. Appl. 33(2), 304–315 (2007). doi: 10.1016/j.eswa.2006.05.002
  32. 32.
    T.-C. Fu, F.-L. Chung, R. Luk, C.M. Ng, Stock time series pattern matching: Template-based vs rule-based approaches. Eng. Appl. Artif. Intell. 20(3), 347–364 (2007)Google Scholar
  33. 33.
    P.-C. Chang, C.-Y. Fan, C.-H. Liu, Y.-W. Wang, J.-J. Lin, Evolving neural network with dynamic time warping and piecewise linear representation system for stock trading decision making. 2009 WRI World Congr. Comput. Sci. Inf. Eng. 5, 303–307 (2009). doi: 10.1109/CSIE.2009.36
  34. 34.
    L. Junmyung, C. Sungzoon, B. Jinwoo, Trend detection using auto-associative neural networks: Intraday KOSPI 200 futures. Proceedings of the IEEE International conference on Computational Intelligence for Financial Engineering, pp. 417–420. (2003) doi: 10.1109/CIFER.2003.1196290
  35. 35.
    L.C. Martinez, D.N. da Hora, J.R. de M Palotti, W. Meira, G.L. Pappa (2009) From an artificial neural network to a stock market day-trading system: A case study on the BM&F BOVESPA, The International Joint Conference on Neural Networks 2006–2013 (2009). doi: 10.1109/IJCNN.2009.5179050
  36. 36.
    A.U. Khan, T.K. Bandopadhyaya, S. Sharma, Classification and identification of stocks using SOM and genetic algorithm based backpropagation neural network. International Conference on Innovation in Management and Information Technology, pp. 292–296 (2008). doi: 10.1109/INNOVATIONS.2008.4781644
  37. 37.
    P.-C. Ko, P.-C. Lin, C.-S. Shih, Stock valuation and dynamic asset allocation with genetic algorithm and cubic spline. Int. Conf. Mach. Learn. Cybern. 7, 3997–4000 (2008). doi: 10.1109/ICMLC.2008.4621101
  38. 38.
    H.-N. Hao, Short-term forecasting of stock price based on genetic-neural network. 6th Int. Conf. Nat. Comput. 4, 1838–1841 (2010). doi: 10.1109/ICNC.2010.5584528
  39. 39.
    W.W.Y. Ng, X.-L. Liang, P.P.K. Chan, D.S. Yeung, Stock investment decision support for Hong Kong market using RBFNN based candlestick models. Int. Conf. on Mach. Learn. Cybern. 2, 538–543 (2011)Google Scholar
  40. 40.
    H. Tahersima, M. Tahersima, M. Fesharaki, N. Hamedi, Forecasting stock exchange movements using neural networks: A case study. Proceedings of the International Conference on Future Computer Science and Applications, pp. 123–126 (2011)Google Scholar
  41. 41.
    Z. Fang, G. Luo, F. Fei, S. Li, Stock forecast method based on wavelet modulus maxima and kalman filter. Proceedings of the 4th International Conference on Management of e- Commerce and e-Government, pp. 50–53 (2010). doi: 10.1109/ICMeCG.2010.19
  42. 42.
    V. Parque, S. Mabu, K. Hirasawa, Enhancing global portfolio optimization using genetic network programming. Proceedings of the SICE Annual Conference, pp. 3078–3083 (2010)Google Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • Antonio M. L. Canelas
    • 1
  • Rui F. M. M. Neves
    • 1
  • Nuno C. G. Horta
    • 1
  1. 1.Instituto de Telecomunicações/Instituto Superior TécnicoLisbonPortugal

Personalised recommendations