Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 100))

  • 5514 Accesses

Abstract

All fundamental microscopic theories of nature contain fermions. Thus we briefly recall the basic properties of a Dirac field in Euclidean space. By using anticommuting Grassmann variables we formulate the path integral for Fermi fields. However, when one tries to define quark or lepton fields on a space-time lattice then one encounters the species-doubling problem: a naively discretized Dirac field describes more particles than expected. This also follows from the celebrated Nielsen–Ninomiya theorem which is proven in the chapter. We present several proposals to discretize fermion fields without or with less doublers, these include Wilson fermions, staggered fermions and Ginsparg–Wilson fermions. At the end we briefly discuss (supersymmetric) Yukawa models and gauge theories with fermions at zero and finite temperature and comment on the sign problem for equilibrium lattice systems with finite baryon number density. In the end-of-chapter problems we deal with the Pfaffian which shows up in (supersymmetric) lattice theories containing Majorana fermions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Recall that in Minkowski space S = γ 0 S − 1 γ 0.

  2. 2.

    The problems with the SLAC derivative in gauge theories as discussed in [19] are absent in theories without local gauge invariance [17].

  3. 3.

    Strictly speaking there is only one zero-mode for odd N. But in the thermodynamic limit the momenta on the edge of the Brillouin zone again give rise to zero-modes.

References

  1. J. Smit, Introduction to Quantum Field Theories on a Lattice (Cambridge University Press, Cambridge, 2002)

    Book  Google Scholar 

  2. I. Montvay, G. Münster, Quantum Fields on a Lattice (Cambridge University Press, Cambridge, 1994)

    Book  Google Scholar 

  3. H.J. Rothe, Lattice Gauge Theories: An Introduction (World Scientific, Singapore, 2012)

    Book  Google Scholar 

  4. C. Gattringer, C. Lang, Quantum Chromodynamics on the Lattice. Springer Lect. Notes Phys., vol. 788 (2010)

    Book  Google Scholar 

  5. G. Roepstorff, Path Integral Approach to Quantum Physics (Springer, Berlin, 1996)

    MATH  Google Scholar 

  6. E. Seiler, Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics (Springer, Berlin, 1982)

    Google Scholar 

  7. V. Mitrjushkin, G. Schierholz (eds.), Lattice Fermions and Structure of the Vacuum (Kluwer Academic, Dordrecht, 2000)

    Google Scholar 

  8. S. Chandrasekharan, U.-J. Wiese, An introduction to chiral symmetry on the lattice. Prog. Part. Nucl. Phys. 53, 373 (2004)

    Article  ADS  Google Scholar 

  9. A. Berezin, The Method of Second Quantization (Academic Press, New York, 1966)

    MATH  Google Scholar 

  10. C. Itzykson, J.M. Drouffe, Statistical Field Theory I (Cambridge University Press, Cambridge, 1989)

    Book  Google Scholar 

  11. K. Wilson, in New Phenomena in Subnuclear Physics (Plenum, New York, 1977)

    Google Scholar 

  12. L. Susskind, Lattice fermions. Phys. Rev. D 16, 3031 (1977)

    Article  ADS  Google Scholar 

  13. S.D. Drell, M. Weinstein, S. Yankielowicz, Variational approach to strong coupling field theory. 1. ϕ 4 theory. Phys. Rev. D 14, 487 (1976)

    Article  ADS  Google Scholar 

  14. S.D. Drell, M. Weinstein, S. Yankielowicz, Strong coupling field theories: 2. Fermions and gauge fields on a lattice. Phys. Rev. D 14, 1627 (1976)

    Article  ADS  Google Scholar 

  15. A. Kirchberg, D. Laenge, A. Wipf, From the dirac operator to Wess–Zumino models on spatial lattices. Ann. Phys. 316, 357 (2005)

    Article  ADS  MATH  Google Scholar 

  16. J. Förster, A. Saenz, U. Wolff, Matrix algorithm for solving Schrödinger equations with position-dependent mass or complex optical potentials. Phys. Rev. E 86, 016701 (2012)

    Article  ADS  Google Scholar 

  17. G. Bergner, T. Kaestner, S. Uhlmann, A. Wipf, Low-dimensional supersymmetric lattice models. Ann. Phys. 323, 946 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. T. Kaestner, G. Bergner, S. Uhlmann, A. Wipf, C. Wozar, Two-dimensional Wess–Zumino models at intermediate couplings. Phys. Rev. D 78, 095001 (2008)

    Article  ADS  Google Scholar 

  19. L.H. Karsten, J. Smit, The vacuum polarization with SLAC lattice fermions. Phys. Lett. B 85, 100 (1979)

    Article  ADS  Google Scholar 

  20. M. Creutz, Chiral anomalies and rooted staggered fermions. Phys. Lett. B 649, 230 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. A. Kronfeld, Lattice gauge theory with staggered fermions: how, where, and why (not), in PoS LAT2007, (2007), p. 016. arXiv:0711.0699v2

    Google Scholar 

  22. H. Nielsen, M. Ninomiya, Absence of neutrinos on a lattice (I). Proof by homotopy theory. Nucl. Phys. B 185, 20 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  23. H. Nielsen, M. Ninomiya, Absence of neutrinos on a lattice. 2. Intuitive topological proof. Nucl. Phys. B 193, 173 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  24. L.H. Karsten, J. Smit, Lattice fermions: species doubling, chiral invariance and the triangle anomaly. Nucl. Phys. B 183, 103 (1981)

    Article  ADS  Google Scholar 

  25. D. Friedan, A proof of the Nielsen Ninomiya theorem. Commun. Math. Phys. 85, 481 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  26. P.H. Ginsparg, K.G. Wilson, A remnant of chiral symmetry on the lattice. Phys. Rev. D 25, 2649 (1982)

    Article  ADS  Google Scholar 

  27. M. Lüscher, Exact chiral symmetry on the lattice and the Ginsparg–Wilson relation. Phys. Lett. B 428, 342 (1998)

    Article  ADS  Google Scholar 

  28. D. Kaplan, A method for simulating chiral fermions on the lattice. Phys. Lett. B 288, 342 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  29. Y. Shamir, Chiral fermion from lattice boundaries. Nucl. Phys. B 406, 90 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  30. V. Furman, Y. Shamir, Axial symmetries in lattice QCD with Kaplan fermions. Nucl. Phys. B 439, 54 (1995)

    Article  ADS  Google Scholar 

  31. S.A. Frolov, A.A. Slavnov, An invariant regularization of the standard model. Phys. Lett. B 309, 344 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  32. R. Narayanan, H. Neuberger, Infinitely many regulator fields for chiral fermions. Phys. Lett. B 302, 62 (1993)

    Article  ADS  Google Scholar 

  33. R. Narayanan, H. Neuberger, Chiral determinants as an overlap of two Vacua. Nucl. Phys. B 412, 574 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. P. Hasenfratz, Lattice QCD without tuning, mixing and current renormalization. Nucl. Phys. B 525, 401 (1998)

    Article  ADS  Google Scholar 

  35. P. Hasenfratz, Prospects for perfect actions. Nucl. Phys. B, Proc. Suppl. 63, 53 (1998)

    Article  ADS  Google Scholar 

  36. P. Hasenfratz, S. Hauswirth, T. Jorg, F. Niedermayer, K. Holland, Testing the fixed point QCD action and the construction of chiral currents. Nucl. Phys. B 643, 280 (2002)

    Article  ADS  Google Scholar 

  37. C. Gattringer, I. Hip, New approximate solutions of the Ginsparg–Wilson equation: tests in 2D. Phys. Lett. B 480, 112 (2000)

    Article  ADS  Google Scholar 

  38. C. Gattringer, A new approach to Ginsparg–Wilson fermions. Phys. Rev. D 63, 114501 (2001)

    Article  ADS  Google Scholar 

  39. C. Gattringer et al., Quenched spectroscopy with fixed point and chirally improved fermions. Nucl. Phys. B 677, 3 (2004)

    Article  ADS  Google Scholar 

  40. H. Neuberger, Exactly massless quarks on the lattice. Phys. Lett. B 417, 141 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  41. H. Neuberger, More about exactly massless quarks on the lattice. Phys. Lett. B 427, 353 (1998)

    Article  ADS  Google Scholar 

  42. P. Hasenfratz, V. Laliena, F. Niedermayer, The index theorem in QCD with a finite cutoff. Phys. Lett. 427, 125 (1998)

    Article  Google Scholar 

  43. N. Cabibbo, L. Maiani, G. Parisi, R. Petronzio, Bounds on the Fermions and Higgs boson masses in grand unified theories. Nucl. Phys. B 158, 295 (1979)

    Article  ADS  Google Scholar 

  44. P. Gerhold, K. Jansen, Upper Higgs boson mass bounds from a chirally invariant lattice Higgs–Yukawa model. J. High Energy Phys. 1004, 094 (2010)

    Article  ADS  Google Scholar 

  45. P. Gerhold, Upper and lower Higgs boson mass bounds from a chirally invariant lattice Higgs–Yukawa model. arXiv:1002.2569v1 [hep-lat]

  46. S. Elitzur, E. Rabinovici, A. Schwimmer, Supersymmetric models on the lattice. Phys. Lett. B 119, 165 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  47. M. Beccaria, C. Rampino, World-line path integral study of supersymmetry breaking in the Wess–Zumino model. Phys. Rev. D 67, 127701 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  48. S. Catterall, S. Karamov, Exact lattice supersymmetry: the two-dimensional \( N=2 \) Wess–Zumino model. Phys. Rev. D 65, 094501 (2002)

    Article  ADS  Google Scholar 

  49. S. Catterall, S. Karamov, A lattice study of the two-dimensional Wess–Zumino model. Phys. Rev. D 68, 014503 (2003)

    Article  ADS  Google Scholar 

  50. C. Wozar, A. Wipf, Supersymmetry breaking in low dimensional models. Ann. Phys. 327, 774 (2012)

    Article  ADS  MATH  Google Scholar 

  51. J. Bartels, J.B. Bronzan, Supersymmetry on a lattice. Phys. Rev. D 28, 818 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  52. F. Synatschke, G. Gies, A. Wipf, Phase diagram and fixed-point structure of two dimensional N = 1 Wess–Zumino models. Phys. Rev. 80, 085007 (2009)

    Google Scholar 

  53. M. Troyer, U.J. Wiese, Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations. Phys. Rev. Lett. 94, 170201 (2005)

    Article  ADS  Google Scholar 

  54. D.H. Weingarten, D.N. Petcher, Monte Carlo integration for lattice gauge theories with fermions. Phys. Lett. B 99, 333 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  55. W. Frazer, A survey of methods of computing minimax and near-minimax polynomial approximations for functions of a single independent variable. J. ACM 12, 295 (1965)

    Article  Google Scholar 

  56. F. Brown et al., On the existence of a phase transition for QCD with three light quarks. Phys. Rev. Lett. 65, 2491 (1990)

    Article  ADS  Google Scholar 

  57. Y. Aoki, G. Endrödi, Z. Fodor, S. Katz, K. Szabó, The order of the quantum chromodynamics transition predicted by the standard model of particle physics. Nature 443, 675 (2006)

    Article  ADS  Google Scholar 

  58. A. Bazavov et al., Equation of state and QCD transition at finite temperature. Phys. Rev. D 80, 014504 (2009)

    Article  ADS  Google Scholar 

  59. I. Sachs, A. Wipf, Generalized Thirring models. Ann. Phys. 249, 380 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  60. Z. Fodor, S.D. Katz, Lattice determination of the critical point of QCD at finite T and μ. J. High Energy Phys. 0203, 014 (2002)

    Article  ADS  Google Scholar 

  61. C.R. Allton et al., The QCD thermal phase transition in the presence of a small chemical potential. Phys. Rev. D 66, 074507 (2002)

    Article  ADS  Google Scholar 

  62. Ph. de Forcrand, O. Philipsen, The QCD phase diagram for small densities from imaginary chemical potential. Nucl. Phys. B 642, 290 (2002)

    Article  ADS  MATH  Google Scholar 

  63. J.B. Kogut, M.A. Stephanov, D. Toublan, J.J.M. Verbaarschot, A. Zhitnitsky, QCD-like theories at finite baryon density. Nucl. Phys. B 582, 477 (2000)

    Article  ADS  Google Scholar 

  64. S. Hands, S. Kim, J.I. Skullerud, A quarkyonic phase in dense two color matter? Phys. Rev. D 81, 091502 (2010)

    Article  ADS  Google Scholar 

  65. R.D. Pisarski, Quark gluon plasma as a condensate of SU(3) Wilson lines. Phys. Rev. D 62, 111501 (2000)

    Article  ADS  Google Scholar 

  66. T.K. Herbst, J.M. Pawlowski, B.J. Schaefer, The phase structure of the Polyakov–quark-meson model beyond mean field. Phys. Lett. B 696, 58 (2011)

    Article  ADS  Google Scholar 

  67. K. Holland, P. Minkowski, M. Pepe, U.J. Wiese, Exceptional confinement in G(2) gauge theory. Nucl. Phys. B 668, 207 (2003)

    Article  ADS  MATH  Google Scholar 

  68. B. Wellegehausen, C. Wozar, A. Wipf, Phase diagram of the lattice G(2) Higgs model. Phys. Rev. D 83, 114502 (2011)

    Article  ADS  Google Scholar 

  69. A. Maas, L. von Smekal, B. Wellegehausen, A. Wipf, The phase diagram of a gauge theory with fermionic baryons. arXiv:1203.5653 [hep-lat]

  70. B. Wellegehausen, Phase diagrams of exceptional and supersymmetric lattice gauge theories. Ph.D.-thesis, Jena (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix: The SLAC Derivative

Appendix: The SLAC Derivative

We introduce the SLAC derivative on a one-dimensional periodic lattice with equidistant sampling points

$$ x_k=x_0+k,\quad k=1,\dots,N . $$
(15.118)

The set of lattice functions x k ψ k ∈ ℂ, equipped with the scalar product

$$ \left( {\phi ,\psi } \right)=\sum\limits_{{k=1}}^{N} {{{{\bar{\phi }}}_{k}}{{\psi }_{k}}} , $$
(15.119)

define a Hilbert space. If ψ is normalized to one we may interpret |ψ k |2 as the probability of finding the particle described by the wave function ψ at site x k . Then the expectation value of the position operator is given by

$$ {{\left\langle {\hat{x}} \right\rangle }_{\psi }}=\left\langle {\bar{\psi }\left| {\hat{x}} \right|\psi } \right\rangle =\sum {{{x}_{k}}{{{\left| {{{\psi }_{k}}} \right|}}^{2}}} \equiv \sum\limits_{{k{k}^{\prime}}} {{{{\bar{\psi }}}_{k}}{{x}_{{k{k}^{\prime}}}}{{\psi }_{{{k}^{\prime}}}}} . $$
(15.120)

As expected, the position operator \(\hat{x}\) is diagonal in real space such that its matrix elements vanish if kk′. To introduce the SLAC derivative we switch to momentum space with wave functions \(\tilde{\psi}(p_{\ell})\equiv \tilde{\psi}_{\ell}\) given by

$$ \begin{array}{*{20}{c}} {{{{\tilde{\psi }}}_{\ell }}=\frac{1}{{\sqrt{N}}}\sum\limits_{{k=1}}^{N} {{{\text{e}}^{{-\text{i}\,{{p}_{\ell }}{{x}_{k}}}}}{{\psi }_{k}}} ,} & {\ell =1,\ldots ,N} \\ \end{array}. $$
(15.121)

The inverse Fourier transformation reads

$$ \begin{array}{*{20}{c}} {{{{\tilde{\psi }}}_{k}}=\frac{1}{{\sqrt{N}}}\sum\limits_{{\ell =1}}^{N} {{{\text{e}}^{{-\text{i}\,{{p}_{\ell }}{{x}_{k}}}}}{{{\tilde{\psi }}}_{\ell }}} ,} & {k=1,\ldots ,N} \\ \end{array}. $$
(15.122)

We choose the {p } symmetric with respect to the origin,

$$ p_\ell=\frac{2\pi}{N} \biggl(\ell-\frac{N+1}{2} \biggr) , $$
(15.123)

and with this choice the number of sites must be odd to obtain periodic wave functions and it must be even to obtain antiperiodic wave functions.

Now we seek a lattice momentum operator \(\hat{p}\) which is diagonal in momentum space and has eigenvalues p . This means that below the cutoff it has exactly the same eigenvalues as the continuum operator on the interval. Similarly as in the continuum we interpret \(\vert\tilde{\psi}_{\ell}\vert^{2}\) as probability for finding the eigenvalue p of \(\hat{p}\). Then the mean value of \(f(\hat{p})\) is

$$ \begin{gathered} {{\left\langle {f\left( {\hat{p}} \right)} \right\rangle }_{\psi }}=\sum\limits_{\ell } {f\left( {{{p}_{\ell }}} \right){{{\left| {{{{\tilde{\psi }}}_{\ell }}} \right|}}^{2}}=\frac{1}{N}} \sum\limits_{\ell } {\sum\limits_{{k{k}^{\prime}}} {{{\text{e}}^{{\text{i}\,{{p}_{\ell }}\left( {{{x}_{k}}-{{x}_{{{k}^{\prime}}}}} \right)}}}} f\left( {{{p}_{\ell }}} \right){{{\bar{\psi }}}_{k}}{{\psi }_{{{k}^{\prime}}}}} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\begin{array}{*{20}{c}} {=\sum\limits_{{k{k}^{\prime}}} {{{{\bar{\psi }}}_{k}}f{{{\left( p \right)}}_{{k{k}^{\prime}}}}{{\psi }_{{{k}^{\prime}}}},} } & {f{{{\left( p \right)}}_{{k{k}^{\prime}}}}=\frac{1}{N}} \\ \end{array}\sum\limits_{\ell } {{{\text{e}}^{{\text{i}\,{{p}_{\ell }}\left( {{{x}_{k}}-{{x}_{{{k}^{\prime}}}}} \right)}}}f\left( {{{p}_{\ell }}} \right)} . \hfill \\ \end{gathered} $$
(15.124)

Of course the operator \(f(\hat{p})\) is non-diagonal in position space and to find its matrix elements f(p) kk we define the generating function

$$ Z\left( x \right)=\frac{1}{N}\sum\limits_{{\ell =1}}^{N} {{{\text{e}}^{{-\text{i}\,N{{p}_{\ell }}x}}}} =\frac{{\sin \left( {\pi Nx} \right)}}{{N\sin \left( {\pi x} \right)}}. $$
(15.125)

The matrix elements are obtained by differentiation,

$$ f(p)_{kk'}= f \biggl(\frac{1}{\mathrm{i}N}\frac{\mathrm{d}}{\mathrm {d}x} \biggr) Z(x) \bigg\vert_{x=t_{kk'}},\quad t_{kk'}=\frac{k-k'}{N} . $$
(15.126)

In particular we find

$$ p_{kk}=0,\quad p_{k\neq k'}=\frac{\pi}{\mathrm{i}N}(-)^{k-k'} \frac{1}{ \sin(\pi t_{kk'})} , $$
(15.127)

and these matrix elements define the SLAC derivative \(\partial_{\mathrm{slac}}=\mathrm{i} \hat{p}\) in position space.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wipf, A. (2013). Fermions on a Lattice. In: Statistical Approach to Quantum Field Theory. Lecture Notes in Physics, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33105-3_15

Download citation

Publish with us

Policies and ethics