Synthesis and Adaptation of Effective Motor Synergies for the Solution of Reaching Tasks

  • Cristiano Alessandro
  • Juan Pablo Carbajal
  • Andrea d’Avella
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7426)


Taking inspiration from the hypothesis of muscle synergies, we propose a method to generate open loop controllers for an agent solving point-to-point reaching tasks. The controller output is defined as a linear combination of a small set of predefined actuations, termed synergies. The method can be interpreted from a developmental perspective, since it allows the agent to autonomously synthesize and adapt an effective set of synergies to new behavioral needs. This scheme greatly reduces the dimensionality of the control problem, while keeping a good performance level. The framework is evaluated in a planar kinematic chain, and the quality of the solutions is quantified in several scenarios.


motor primitives motor control development 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    d’Avella, A., Saltiel, P., Bizzi, E.: Combinations of muscle synergies in the construction of a natural motor behavior. Nat. Neurosci. 6, 300–308 (2003)CrossRefGoogle Scholar
  2. 2.
    Ivanenko, Y.P., Cappellini, G., Dominici, N., Poppele, R.E., Lacquaniti, F.: Coordination of locomotion with voluntary movements in humans. J. Neurosci. 25(31), 7238–7253 (2005)CrossRefGoogle Scholar
  3. 3.
    Cappellini, G., Ivanenko, Y.P., Poppele, R.E., Lacquaniti, F.: Motor patterns in human walking and running. J. Neurophysiol. 95(6), 3426–3437 (2006)CrossRefGoogle Scholar
  4. 4.
    d’Avella, A., Fernandez, L., Portone, A., Lacquaniti, F.: Modulation of phasic and tonic muscle synergies with reaching direction and speed. J. Neurophysiol. 100(3), 1433–1454 (2008)CrossRefGoogle Scholar
  5. 5.
    Dominici, N., Ivanenko, Y.P., Cappellini, G., D’Avella, A., Mondì, V., Cicchese, M., Fabiano, A., Silei, T., Di Paolo, A., Giannini, C., Poppele, R.E., Lacquaniti, F.: Locomotor primitives in newborn babies and their development. Science 334(6058), 997–999 (2011)CrossRefGoogle Scholar
  6. 6.
    Nori, F.: Symbolic Control with Biologically Inspired Motion Primitives. PhD thesis, University of Genova (2005)Google Scholar
  7. 7.
    Alessandro, C., Nori, F.: Identification of synergies by optimization of trajectory tracking tasks. In: The Fourth IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, Roma, Italy, June 24-27, pp. 924–930 (2012)Google Scholar
  8. 8.
    Todorov, E., Ghahramani, Z.: Unsupervised learning of sensory-motor primitives. In: Proc. 25th Int. Conf. IEEE Eng. Med. & Biol. Soc., pp. 1750–1753. IEEE (2003)Google Scholar
  9. 9.
    Schaal, S., Peters, J., Nakanishi, J., Ijspeert, A.: Learning movement primitives. In: Dario, P., Chatila, R. (eds.) Robotics Research. Tracts in Adv. Rob., vol. 15, pp. 561–572. Springer (2005)Google Scholar
  10. 10.
    Hollerbach, J.M., Flash, T.: Dynamic interactions between limb segments during planar arm movement. Biol. Cybern. 44(1), 67–77 (1982)CrossRefGoogle Scholar
  11. 11.
    Muceli, S., Boye, A.T., D’Avella, A., Farina, D.: Identifying representative synergy matrices for describing muscular activation patterns during multidirectional reaching in the horizontal plane. J. Neurophysiol. 103(3), 1532–1542 (2010)CrossRefGoogle Scholar
  12. 12.
    Neptune, R.R., Clark, D.J., Kautz, S.A.: Modular control of human walking: a simulation study. J. Biomech. 42(9), 1282–1287 (2009)CrossRefGoogle Scholar
  13. 13.
    Shkolnik, A., Tedrake, R.: Sample-based planning with volumes in configuration space. arXiv:1109.3145v1 (September 2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Cristiano Alessandro
    • 1
  • Juan Pablo Carbajal
    • 1
  • Andrea d’Avella
    • 2
  1. 1.Artificial Intelligence LaboratoryUniversity of ZürichSwitzerland
  2. 2.Laboratory of Neuromotor PhysiologyFondazione Santa LuciaItaly

Personalised recommendations