Skip to main content

Modelling Walking Behaviors Based on CPGs: A Simplified Bio-inspired Architecture

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7426))

Abstract

In this article, we use a recurrent neural network including four-cell core architecture to model the walking gait and implement it with the simulated and physical NAO robot. Meanwhile, inspired by the biological CPG models, we propose a simplified CPG model which comprises motorneurons, interneurons, sensor neurons and the simplified spinal cord. Within this model, the CPGs do not directly output trajectories to the servo motors. Instead, they only work to maintain the phase relation among ipsilateral and contralateral limbs. The final output is dependent on the integration of CPG signals, outputs of interneurons, motor neurons and sensor neurons (sensory feedback).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amrollah, E., Henaff, P.: On the role of sensory feedbacks in rowat–selverston cpg to improve robot legged locomotion. Frontiers in Neuroscience 4 (2010)

    Google Scholar 

  2. Geng, T., Porr, B., Worgotter, F.: Fast biped walking with a sensor-driven neuronal controller and real-time online learning. Journal of Robotics Research 25, 243–259 (2006)

    Article  Google Scholar 

  3. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Networks 21(4), 642–653 (2008)

    Article  Google Scholar 

  4. Latash, M.L.: Neurophysiological Basis of Movement. Human Kinetics Publishers (1998)

    Google Scholar 

  5. Lee, G., Lowe, R., Ziemke, T.: Modelling early infant walking: Testing a generic cpg architecture on the nao humanoid. In: Proceedings of Development and Learning (ICDL) 2011 IEEE International Conference, Frankfurt, Germany (October 2011)

    Google Scholar 

  6. Li, C., Lowe, R., Duran, B., Ziemke, T.: Humanoids that crawl: Comparing gait performance of icub and nao using a cpg architecture. In: Computer Science and Automation Engineering (CSAE), Shanghai, China (May 2011)

    Google Scholar 

  7. Liu, C., Chen, Q., Wang, D.: Biped robot walking using central pattern generator and genetic algorithm. In: Proceeding of International Conference on Robotics (2010)

    Google Scholar 

  8. Nakamura, Y., Mori, T., Sato, M., Ishii, S.: Reinforcement learning for a biped robot based on a cpg-actor-critic method. Neural Netw. 20(6), 723–735 (2007)

    Article  MATH  Google Scholar 

  9. Nassour, J., Hénaff, P., Ben Ouezdou, F., Cheng, G.: A Study of Adaptive Locomotive Behaviors of a Biped Robot: Patterns Generation and Classification. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, J.-A., Mouret, J.-B. (eds.) SAB 2010. LNCS, vol. 6226, pp. 313–324. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Orlovskii, G.N., Deliagina, T.G., Grillner, S.: Neuronal control of locomotion: from mollusc to man. Oxford University Press (1999)

    Google Scholar 

  11. Righetti, L., Ijspeert, A.: Design methodologies for central pattern generators: an application to crawling humanoids. In: Proceedings of Robotics: Science and Systems, Philadelphia, USA (August 2006)

    Google Scholar 

  12. Rutishauser, S., Spröwitz, A., Righetti, L., Ijspeert, A.J.: Passive compliant quadruped robot using central pattern generators for locomotion control. Physica 577.2, 617–639 (2006)

    Google Scholar 

  13. Rybak, I.A., Shevtsova, N.A., Lafreniere-Roula, M., McCrea, D.A.: Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion. The Journal of Physiology Online 577, 617–639 (2006)

    Google Scholar 

  14. Thelen, E., Smith, L.B.: A dynamic systems approach to the development of cognition and action. MIT Press, Boston (1994)

    Google Scholar 

  15. Vaal, J., Van Soest, A.J., Hopkins, B.: Modelling the early development of bipedal locomotion: A multidisciplinary approach. Human Movement Science 14(4-5), 609–636 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, C., Lowe, R., Ziemke, T. (2012). Modelling Walking Behaviors Based on CPGs: A Simplified Bio-inspired Architecture. In: Ziemke, T., Balkenius, C., Hallam, J. (eds) From Animals to Animats 12. SAB 2012. Lecture Notes in Computer Science(), vol 7426. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33093-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33093-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33092-6

  • Online ISBN: 978-3-642-33093-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics