Modelling Walking Behaviors Based on CPGs: A Simplified Bio-inspired Architecture

  • Cai Li
  • Robert Lowe
  • Tom Ziemke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7426)


In this article, we use a recurrent neural network including four-cell core architecture to model the walking gait and implement it with the simulated and physical NAO robot. Meanwhile, inspired by the biological CPG models, we propose a simplified CPG model which comprises motorneurons, interneurons, sensor neurons and the simplified spinal cord. Within this model, the CPGs do not directly output trajectories to the servo motors. Instead, they only work to maintain the phase relation among ipsilateral and contralateral limbs. The final output is dependent on the integration of CPG signals, outputs of interneurons, motor neurons and sensor neurons (sensory feedback).


CPGs the NAO robot Interneuron Motorneuron 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amrollah, E., Henaff, P.: On the role of sensory feedbacks in rowat–selverston cpg to improve robot legged locomotion. Frontiers in Neuroscience 4 (2010)Google Scholar
  2. 2.
    Geng, T., Porr, B., Worgotter, F.: Fast biped walking with a sensor-driven neuronal controller and real-time online learning. Journal of Robotics Research 25, 243–259 (2006)CrossRefGoogle Scholar
  3. 3.
    Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Networks 21(4), 642–653 (2008)CrossRefGoogle Scholar
  4. 4.
    Latash, M.L.: Neurophysiological Basis of Movement. Human Kinetics Publishers (1998)Google Scholar
  5. 5.
    Lee, G., Lowe, R., Ziemke, T.: Modelling early infant walking: Testing a generic cpg architecture on the nao humanoid. In: Proceedings of Development and Learning (ICDL) 2011 IEEE International Conference, Frankfurt, Germany (October 2011)Google Scholar
  6. 6.
    Li, C., Lowe, R., Duran, B., Ziemke, T.: Humanoids that crawl: Comparing gait performance of icub and nao using a cpg architecture. In: Computer Science and Automation Engineering (CSAE), Shanghai, China (May 2011)Google Scholar
  7. 7.
    Liu, C., Chen, Q., Wang, D.: Biped robot walking using central pattern generator and genetic algorithm. In: Proceeding of International Conference on Robotics (2010)Google Scholar
  8. 8.
    Nakamura, Y., Mori, T., Sato, M., Ishii, S.: Reinforcement learning for a biped robot based on a cpg-actor-critic method. Neural Netw. 20(6), 723–735 (2007)zbMATHCrossRefGoogle Scholar
  9. 9.
    Nassour, J., Hénaff, P., Ben Ouezdou, F., Cheng, G.: A Study of Adaptive Locomotive Behaviors of a Biped Robot: Patterns Generation and Classification. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, J.-A., Mouret, J.-B. (eds.) SAB 2010. LNCS, vol. 6226, pp. 313–324. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Orlovskii, G.N., Deliagina, T.G., Grillner, S.: Neuronal control of locomotion: from mollusc to man. Oxford University Press (1999)Google Scholar
  11. 11.
    Righetti, L., Ijspeert, A.: Design methodologies for central pattern generators: an application to crawling humanoids. In: Proceedings of Robotics: Science and Systems, Philadelphia, USA (August 2006)Google Scholar
  12. 12.
    Rutishauser, S., Spröwitz, A., Righetti, L., Ijspeert, A.J.: Passive compliant quadruped robot using central pattern generators for locomotion control. Physica 577.2, 617–639 (2006)Google Scholar
  13. 13.
    Rybak, I.A., Shevtsova, N.A., Lafreniere-Roula, M., McCrea, D.A.: Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion. The Journal of Physiology Online 577, 617–639 (2006)Google Scholar
  14. 14.
    Thelen, E., Smith, L.B.: A dynamic systems approach to the development of cognition and action. MIT Press, Boston (1994)Google Scholar
  15. 15.
    Vaal, J., Van Soest, A.J., Hopkins, B.: Modelling the early development of bipedal locomotion: A multidisciplinary approach. Human Movement Science 14(4-5), 609–636 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Cai Li
    • 1
  • Robert Lowe
    • 1
  • Tom Ziemke
    • 1
  1. 1.Interaction Lab.University of SkövdeSweden

Personalised recommendations