The Quantum Query Complexity of Read-Many Formulas

  • Andrew M. Childs
  • Shelby Kimmel
  • Robin Kothari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7501)


The quantum query complexity of evaluating any read-once formula with n black-box input bits is \(\Theta(\sqrt n)\). However, the corresponding problem for read-many formulas (i.e., formulas in which the inputs can be repeated) is not well understood. Although the optimal read-once formula evaluation algorithm can be applied to any formula, it can be suboptimal if the inputs can be repeated many times. We give an algorithm for evaluating any formula with n inputs, size S, and G gates using \(O(\min\{n, \sqrt{S}, n^{1/2} G^{1/4}\})\) quantum queries. Furthermore, we show that this algorithm is optimal, since for any n,S,G there exists a formula with n inputs, size at most S, and at most G gates that requires \(\Omega(\min\{n, \sqrt{S}, n^{1/2} G^{1/4}\})\) queries. We also show that the algorithm remains nearly optimal for circuits of any particular depth k ≥ 3, and we give a linear-size circuit of depth 2 that requires \(\tilde\Omega(n^{5/9})\) queries. Applications of these results include a \(\tilde\Omega(n^{19/18})\) lower bound for Boolean matrix product verification, a nearly tight characterization of the quantum query complexity of evaluating constant-depth circuits with bounded fanout, new formula gate count lower bounds for several functions including parity, and a construction of an AC0 circuit of linear size that can only be evaluated by a formula with Ω(n 2 − ε ) gates.


Quantum Algorithm Query Complexity Gate Count Formula Size Circuit Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ambainis, A., Childs, A.M., Reichardt, B.W., Špalek, R., Zhang, S.: Any AND-OR formula of size N can be evaluated in time N 1/2 + o(1) on a quantum computer. SIAM J. Comput. 39(6), 2513–2530 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Ambainis, A., Iwama, K., Nakanishi, M., Nishimura, H., Raymond, R., Tani, S., Yamashita, S.: Quantum Query Complexity of Boolean Functions with Small On-Sets. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 907–918. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Barnum, H., Saks, M.: A lower bound on the quantum query complexity of read-once functions. J. Comput. System Sci. 69(2), 244–258 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. J. ACM 48(4), 778–797 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Beame, P., Machmouchi, W.: The quantum query complexity of AC0. arXiv:1008.2422Google Scholar
  6. 6.
    Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computing. SIAM J. Comput. 26, 1510–1523 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Berzina, A., Dubrovsky, A., Freivalds, R., Lace, L., Scegulnaja, O.: Quantum Query Complexity for Some Graph Problems. In: Van Emde Boas, P., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2004. LNCS, vol. 2932, pp. 140–150. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschr. Phys. 46(4-5), 493–505 (1998)CrossRefGoogle Scholar
  9. 9.
    Buhrman, H., Cleve, R., Wigderson, A.: Quantum vs. classical communication and computation. In: 30th STOC, pp. 63–68 (1998)Google Scholar
  10. 10.
    Buhrman, H., Špalek, R.: Quantum verification of matrix products. In: 17th SODA, pp. 880–889 (2006)Google Scholar
  11. 11.
    Childs, A.M., Cleve, R., Jordan, S.P., Yonge-Mallo, D.: Discrete-query quantum algorithm for NAND trees. Theory Comput. 5, 119–123 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dürr, C., Heiligman, M., Høyer, P., Mhalla, M.: Quantum query complexity of some graph problems. SIAM J. Comput. 35(6), 1310–1328 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Farhi, E., Goldstone, J., Gutmann, S.: A quantum algorithm for the Hamiltonian NAND tree. Theory Comput. 4(1), 169–190 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Limit on the speed of quantum computation in determining parity. Phys. Rev. Lett. 81(24), 5442–5444 (1998)CrossRefGoogle Scholar
  15. 15.
    Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325–328 (1997)CrossRefGoogle Scholar
  16. 16.
    Høyer, P., Mosca, M., de Wolf, R.: Quantum Search on Bounded-Error Inputs. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 291–299. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Jeffery, S., Kothari, R., Magniez, F.: Improving quantum query complexity of Boolean matrix multiplication using graph collision, arXiv:1112.5855Google Scholar
  18. 18.
    Jukna, S.: Boolean Function Complexity. Springer (2012)Google Scholar
  19. 19.
    Khrapchenko, V.M.: Complexity of the realization of a linear function in the class of Π-circuits. Math. Notes 9(1), 21–23 (1971)zbMATHCrossRefGoogle Scholar
  20. 20.
    Kothari, R.: Formula size lower bounds for AC0 functions. Theoretical Computer Science Stack Exchange,
  21. 21.
    Le Gall, F.: Improved output-sensitive quantum algorithms for Boolean matrix multiplication. In: 23rd SODA, pp. 1464–1476 (2012)Google Scholar
  22. 22.
    Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. SIAM J. Comput. 37, 413–424 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Nechiporuk, E.I.: A Boolean function. Soviet Mathematics Doklady 7, 999–1000 (1966)zbMATHGoogle Scholar
  24. 24.
    Nisan, N.: Shortest formula for an n-term monotone CNF. Theoretical Computer Science Stack Exchange,
  25. 25.
    Reichardt, B.: Span programs and quantum query complexity: The general adversary bound is nearly tight for every Boolean function. In: 50th FOCS, pp. 544–551 (2009)Google Scholar
  26. 26.
    Reichardt, B.: Reflections for quantum query algorithms. In: 22nd SODA, pp. 560–569 (2011)Google Scholar
  27. 27.
    Vassilevska Williams, V., Williams, R.: Subcubic equivalences between path, matrix, and triangle problems. In: 51st FOCS, pp. 645–654 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andrew M. Childs
    • 1
    • 2
  • Shelby Kimmel
    • 3
  • Robin Kothari
    • 2
    • 4
  1. 1.Department of Combinatorics & OptimizationUniversity of WaterlooCanada
  2. 2.Institute for Quantum ComputingUniversity of WaterlooCanada
  3. 3.Center for Theoretical PhysicsMassachusetts Institute of TechnologyUSA
  4. 4.David R. Cheriton School of Computer ScienceUniversity of WaterlooCanada

Personalised recommendations