Skip to main content

Time-Dependent Route Planning with Generalized Objective Functions

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7501)

Abstract

We consider the problem of finding routes in road networks that optimize a combination of travel time and additional time-invariant costs. These could be an approximation of energy consumption, distance, tolls, or other penalties. The resulting problem is NP-hard, but if the additional cost is proportional to driving distance we can solve it optimally on the German road network within 2.3 s using a multi-label A* search. A generalization of time-dependent contraction hierarchies to the problem yields approximations with negligible errors using running times below 5 ms which makes the model feasible for high-throughput web services. By introducing tolls we get considerably harder instances, but still we have running times below 41 ms and very small errors.

Keywords

  • Travel Time
  • Road Network
  • Destination Node
  • Optimal Route
  • Bend Point

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Partially supported by DFG project SA 933/5-1,2.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Delling, D., Wagner, D.: Time-Dependent Route Planning. In: Ahuja, R.K., Möhring, R.H., Zaroliagis, C.D. (eds.) Robust and Online Large-Scale Optimization. LNCS, vol. 5868, pp. 207–230. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  2. Batz, G.V., Delling, D., Sanders, P., Vetter, C.: Time-Dependent Contraction Hierarchies. In: Proceedings of the 11th Workshop on Algorithm Engineering and Experiments (ALENEX 2009), pp. 97–105. SIAM (April 2009)

    Google Scholar 

  3. Delling, D.: Time-Dependent SHARC-Routing. Algorithmica 60(1), 60–94 (2011)

    CrossRef  MathSciNet  MATH  Google Scholar 

  4. Batz, G.V., Geisberger, R., Neubauer, S., Sanders, P.: Time-Dependent Contraction Hierarchies and Approximation. In: [21], pp. 166–177

    Google Scholar 

  5. Brunel, E., Delling, D., Gemsa, A., Wagner, D.: Space-Efficient SHARC-Routing. In: [21], pp. 47–58

    Google Scholar 

  6. Vetter, C.: Parallel Time-Dependent Contraction Hierarchies. Student Research Project (2009), http://algo2.iti.kit.edu/download/vetter_sa.pdf

  7. Dreyfus, S.E.: An Appraisal of Some Shortest-Path Algorithms. Operations Research 17(3), 395–412 (1969)

    CrossRef  MATH  Google Scholar 

  8. Orda, A., Rom, R.: Shortest-Path and Minimum Delay Algorithms in Networks with Time-Dependent Edge-Length. Journal of the ACM 37(3), 607–625 (1990)

    CrossRef  MathSciNet  MATH  Google Scholar 

  9. Orda, A., Rom, R.: Minimum Weight Paths in Time-Dependent Networks. Networks 21, 295–319 (1991)

    CrossRef  MathSciNet  MATH  Google Scholar 

  10. Dean, B.C.: Shortest Paths in FIFO Time-Dependent Networks: Theory and Algorithms. Technical report, Massachusetts Institute of Technology (1999)

    Google Scholar 

  11. Kieritz, T., Luxen, D., Sanders, P., Vetter, C.: Distributed Time-Dependent Contraction Hierarchies. In: [21], pp. 83–93

    Google Scholar 

  12. Geisberger, R., Kobitzsch, M., Sanders, P.: Route Planning with Flexible Objective Functions. In: Proceedings of the 12th Workshop on Algorithm Engineering and Experiments (ALENEX 2010), pp. 124–137. SIAM (2010)

    Google Scholar 

  13. Ahuja, R.K., Orlin, J.B., Pallottino, S., Scutellà, M.G.: Dynamic Shortest Paths Minimizing Travel Times and Costs. Networks 41(4), 197–205 (2003)

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of \(\mathcal{NP}\)-Completeness. W.H. Freeman and Company (1979)

    Google Scholar 

  15. Foschini, L., Hershberger, J., Suri, S.: On the Complexity of Time-Dependent Shortest Paths. In: Proceedings of the 22nd Annual ACM–SIAM Symposium on Discrete Algorithms (SODA 2011), pp. 327–341. SIAM (2011)

    Google Scholar 

  16. Hansen, P.: Bricriteria Path Problems. In: Fandel, G., Gal, T. (eds.) Multiple Criteria Decision Making–Theory and Application, pp. 109–127. Springer (1979)

    Google Scholar 

  17. Mandow, L., Pérez-de-la-Cruz, J.L.: Multiobjective A* Search with Consistent Heuristics. Journal of the ACM 57(5), 27:1–27:24 (2010)

    CrossRef  MathSciNet  Google Scholar 

  18. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  19. Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact Routing in Large Road Networks Using Contraction Hierarchies. Transportation Science (2012) (accepted for publication)

    Google Scholar 

  20. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A Hub-Based Labeling Algorithm for Shortest Paths in Road Networks. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 230–241. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  21. Festa, P. (ed.): SEA 2010. LNCS, vol. 6049. Springer, Heidelberg (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Batz, G.V., Sanders, P. (2012). Time-Dependent Route Planning with Generalized Objective Functions. In: Epstein, L., Ferragina, P. (eds) Algorithms – ESA 2012. ESA 2012. Lecture Notes in Computer Science, vol 7501. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33090-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33090-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33089-6

  • Online ISBN: 978-3-642-33090-2

  • eBook Packages: Computer ScienceComputer Science (R0)