Advertisement

Vectorized Algorithms for Quadtree Construction and Descent

  • Eraldo P. Marinho
  • Alexandro Baldassin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7439)

Abstract

This paper presents vectorized methods of construction and descent of quadtrees that can be easily adapted to message passing parallel computing. A time complexity analysis for the present approach is also discussed. The proposed method of tree construction requires a hash table to index nodes of a linear quadtree in the breadth-first order. The hash is performed in two steps: an internal hash to index child nodes and an external hash to index nodes in the same level (depth). The quadtree descent is performed by considering each level as a vector segment of a linear quadtree, so that nodes of the same level can be processed concurrently.

Keywords

Smooth Particle Hydrodynamic Hash Table Smooth Particle Hydrodynamic Index Node Smooth Particle Hydrodynamic Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Finkel, R.A., Bentley, J.L.: Quad Trees: A data structure for retrieval on composite keys. Acta Inf. 4, 1–9 (1974)zbMATHCrossRefGoogle Scholar
  2. 2.
    Gaede, V., Günther, O.: Multidimensional access methods. ACM Computing Surveys 2(30), 170–231 (1998)CrossRefGoogle Scholar
  3. 3.
    Poulakidas, A.S., Srinivasan, A., Eğecioğlu, Ö., Ibarra, O., Yang, T.: Image compression for fast wavelet-based subregion retrieval. Theoretical Computer Science 240(2), 447–469 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Fischer, A., Bar-Yoseph, P.Z.: Adaptive mesh generation based on multi-resolution quadtree representation. International Journal For Numerical Methods In Engineering 48, 1571–1582 (2000)zbMATHCrossRefGoogle Scholar
  5. 5.
    Schustere, G.M., Katsaggelos, A.K.: An optimal quadtree-based motion estimation and motion-compensated interpolation scheme for video compression. IEEE Transactions on Image Processing 7(11), 1505–1523 (1998)CrossRefGoogle Scholar
  6. 6.
    Ichinose, N., Yada, T., Takagi, T.: Quadtree representation of DNA sequences. Genome Informatics 12, 510–511 (2001)Google Scholar
  7. 7.
    McNaughton, M., Lu, P., Schaeffer, J., Szafron, D.: Memory-efficient A* heuristics for multiple sequence alignment. In: Proceedings of the Eighteenth National Conference on Artificial Intelligence and Fourteenth Conference on Innovative Applications of Artificial Intelligence, July 28-August, pp. 737–743. AAAI Press, Edmonton (2002)Google Scholar
  8. 8.
    Callahan, P.B.: Optimal parallel all-nearest-neighbors using the well-separated pair decomposition. In: Proc. 34th Symp. Foundations of Computer Science, pp. 332–340. IEEE (1993)Google Scholar
  9. 9.
    Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm for approximate nearest neighbor searching in fixed dimensions. J. ACM 45(6), 891–923 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Barnes, J., Hut, P.: A hierarchical O(N log N) force-calculation algorithm. Nature 324, 446–449 (1986)CrossRefGoogle Scholar
  11. 11.
    Warren, M.S., Salmon, J.K.: A parallel hashed tree N-body algorithm. In: ACM Proceedings, Supercomputing 1993, November 15-19, pp. 12–21. ACM Press, Portland (1993)CrossRefGoogle Scholar
  12. 12.
    Warren, M.S., Salmon, J.K.: A portable parallel particle program. Comput. Phys. Comm. (87), 266–290 (1995)Google Scholar
  13. 13.
    Marinho, E.P., Lépine, J.R.D.: SPH simulations of clumps formation by dissipative collision of molecular clouds. I. Non magnetic case. Astronomy and Astrophysics Supplement 142, 165–179 (2000)CrossRefGoogle Scholar
  14. 14.
    Marinho, E.P., Andreazza, C.M., Lépine, J.R.D.: SPH simulations of clumps formation by dissipative collisions of molecular clouds. II. Magnetic case. Astronomy and Astrophysics 379, 1123–1137 (2001)CrossRefGoogle Scholar
  15. 15.
    Samet, H.: The design and analysis of spatial data structures. Addison-Wesley Longman Publishing Co., Inc. (1990)Google Scholar
  16. 16.
    Hung, Y., Rosenfeld, A.: Parallel processing of linear quadtrees on a mesh-connected computer. J. Parallel Distrib. Comput. 7(1), 1–27 (1989)CrossRefGoogle Scholar
  17. 17.
    Mason, D.: Linear quadtree algorithms for transputer array. IEEE Proceedings of Computers and Digital Techniques 137(1), 114–128 (1990)CrossRefGoogle Scholar
  18. 18.
    Dehne, F., Ferreira, A.G., Rau-chaplin, A.: Parallel processing of pointer based quadtrees on hypercube multiprocessors. In: Proc. International Conference on Parallel Processing (1991)Google Scholar
  19. 19.
    Yang, S., Lee, R.: Efficient parallel nighbor finding algorithms for quadtrees on hypercube. Journal of Information Science and Engineering 9, 81–102 (1993)Google Scholar
  20. 20.
    Bhaskar, S.K., Rosenfeld, A., Wu, A.Y.: Parallel processing of regions represented by linear quadtrees. Computer Vision, Graphics, and Image Processing 42(3), 371–380 (1988)CrossRefGoogle Scholar
  21. 21.
    Gargantini, I.: An effective way to represent quadtrees. Commun. ACM 25(12), 905–910 (1982)zbMATHCrossRefGoogle Scholar
  22. 22.
    Hernquist, L.: Vectorization of Tree Traversals. Journal of Computational Physics 87, 137–147 (1990)zbMATHCrossRefGoogle Scholar
  23. 23.
    N-body algorithm. In: ACM, editor, Proceedings, Supercomputing 1993, Portland, Oregon, November 15-19, pp. 12–21. ACM Press (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Eraldo P. Marinho
    • 1
  • Alexandro Baldassin
    • 1
  1. 1.Departamento de Estatística, Matemática, Aplicada e Computação, IGCEUniv Estadual Paulista (UNESP)Rio ClaroBrazil

Personalised recommendations