Skip to main content

Optimization of a Short-Range Proximity Effect Correction Algorithm in E-Beam Lithography Using GPGPUs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7439))

Abstract

The e-beam lithography is used to provide high resolution circuit patterning for circuit fabrication processes. However, due to electron scattering in resist and substrate it occurs an undesired exposure of regions which are adjacent to the actual exposed regions. These proximity effects represent an essential limitation to the attainable lithographic resolution. Since these effects can be described mathematically, different approaches were investigated to simulate and correct them. The developed algorithms provide the required precision for printing of circuit patterns, but on the other side demand a tremendous computational power. Modern GPGPUs consist of hundreds of processing cores and provide the same computational power as a small cluster. Therefore, the required computational power of correction algorithms may be achieved using GPGPUs. In this paper, we evaluate the achievable performance for a short-range proximity effect correction algorithm using GPGPUs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, T., Hattori, Y., Iijima, T., Anze, H., Shimizu, S.O.K.T., Matsuki, K., Tojo, H.I., Takigawa, T.: High-accuracy proximity effect correction for mask writing. Japanese Journal of Applied Physics 46(2), 826–833 (2007)

    Article  Google Scholar 

  2. Boegli, V., Johnson, L., Kao, H., Veneklasen, L., Hofmann, U., Finkelstein, I., Stovall, S., Rishton, S.: Implementation of real-time proximity effect correction in a raster shaped beam tool. Papers from the 44th International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication, vol. 18, pp. 3138–3142 (November 2000)

    Google Scholar 

  3. Bojko, R.J., Li, J., He, L., Baehr-Jones, T., Hochberg, M., Aida, Y.: Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 29(6), 06F3091–06F3096 (2011)

    Google Scholar 

  4. Crandall, R., Hofmann, U., Lozes, R.L.: Contrast limitations in electron-beam lithography. Papers from the 43rd International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication, AVS, vol. 17, pp. 2945–2947 (November 1999)

    Google Scholar 

  5. Dal’zotto, B., Dugourd, H., Lerme, M., Méot, F.: Advances in proximity effect measurement and correction in electron beam lithography. Microelectronic Engineering 3(1-4), 105–112 (1985)

    Article  Google Scholar 

  6. Eisenmann, H., Waas, T., Hartmann, H.: Proxecco - proximity effect correction by convolution. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 11(6), 2741–2745 (1993)

    Article  Google Scholar 

  7. Keil, K., Hauptmann, M., Kretz, J., Constancias, C., Pain, L., Bartha, J.-W.: Resolution and total blur: Correlation and focus dependencies in e-beam lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 27(6), 2722–2726 (2009)

    Article  Google Scholar 

  8. Klimpel, T., Schulz, M., Zimmermann, R., Stock, H.-J., Zepka, A.: Model based hybrid proximity effect correction scheme combining dose modulation and shape adjustments. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 29(6),06F315 – 06F315 (2011)

    Google Scholar 

  9. Lee, S.-Y., Anupongpaibool, N.: Optimization of distributed implementation of grayscale electron-beam proximity effect correction on a temporally heterogeneous cluster. In: Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS 2005) - Workshop 13, vol. 14. IEEE Computer Society (2005)

    Google Scholar 

  10. Marrian, C.R.K., Dobisz, E.A., Dagata, J.A.: Electron-beam lithography with the scanning tunneling microscope. Journal of Vacuum Science & Technology B 10(6), 2877–2881 (1992)

    Article  Google Scholar 

  11. Ogino, K., Hoshino, H., Machida, Y., Osawa, M., Arimoto, H., Takahashi, K., Yamashita, H.: High-performance proximity effect correction for sub-70 nm design rule system on chip devices in 100 kv electron projection lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 21(6), 2663–2667 (2003)

    Article  Google Scholar 

  12. Owen, G.: Methods for proximity effect correction in electron lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 8(6), 1889–1892 (1990)

    Article  Google Scholar 

  13. Owen, G., Rissman, P.: Proximity effect correction for electron beam lithography by equalization of background dose. Journal of Applied Physics 54(6), 3573–3581 (1983)

    Article  Google Scholar 

  14. Parikh, M.: Corrections to proximity effects in electron beam lithography. ii. implementation. Journal of Applied Physics 50(6), 4378–4382 (1979)

    Article  Google Scholar 

  15. Pavkovich, J.M.: Proximity effect correction calculations by the integral equation approximate solution method. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 4(1), 159–163 (1986)

    Article  Google Scholar 

  16. Rio, D., Constancias, C., Saied, M., Icard, B., Pain, L.: Study on line edge roughness for electron beam acceleration voltages from 50 to 5 kV. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 27(6), 2512–2517 (2009)

    Article  Google Scholar 

  17. Rosenfield, M., Rishton, S., Kern, D., Seeger, D., Whiting, C.: A study of proximity effects at high electron-beam voltages for x-ray mask fabrication part 1: Additive mask processes. Microelectronic Engineering 13(1-4), 165–172 (1991)

    Article  Google Scholar 

  18. Schäfer, A., Fey, D.: High performance stencil code algorithms for gpgpus. Procedia Computer Science 4(0), 2027–2036 (2011)

    Article  Google Scholar 

  19. Schneider, M., Fey, D., Kapusi, D., Machleidt, T.: Performance comparison of designated preprocessing white light interferometry algorithms on emerging multi- and many-core architectures. Procedia Computer Science 4(0), 2037–2046 (2011)

    Article  Google Scholar 

  20. Seidler, R., Schmidt, M., Schäfer, A., Fey, D.: Comparison of selected parallel path planning algorithms on gpgpus and multi-core. In: Proceedings of the Annual International Conference on Advances in Distributed and Parallel Computing, pp. A133–A139 (November 2010)

    Google Scholar 

  21. Yamashita, H., Yamamoto, J., Koba, F., Arimoto, H.: Proximity effect correction using blur map in electron projection lithography. In: Advanced Lithography Applications, vol. 23, pp. 3188–3192 (December 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schneider, M., Belic, N., Sambale, C., Hofmann, U., Fey, D. (2012). Optimization of a Short-Range Proximity Effect Correction Algorithm in E-Beam Lithography Using GPGPUs. In: Xiang, Y., Stojmenovic, I., Apduhan, B.O., Wang, G., Nakano, K., Zomaya, A. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2012. Lecture Notes in Computer Science, vol 7439. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33078-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33078-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33077-3

  • Online ISBN: 978-3-642-33078-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics