Advertisement

Optimization of a Short-Range Proximity Effect Correction Algorithm in E-Beam Lithography Using GPGPUs

  • Max Schneider
  • Nikola Belic
  • Christoph Sambale
  • Ulrich Hofmann
  • Dietmar Fey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7439)

Abstract

The e-beam lithography is used to provide high resolution circuit patterning for circuit fabrication processes. However, due to electron scattering in resist and substrate it occurs an undesired exposure of regions which are adjacent to the actual exposed regions. These proximity effects represent an essential limitation to the attainable lithographic resolution. Since these effects can be described mathematically, different approaches were investigated to simulate and correct them. The developed algorithms provide the required precision for printing of circuit patterns, but on the other side demand a tremendous computational power. Modern GPGPUs consist of hundreds of processing cores and provide the same computational power as a small cluster. Therefore, the required computational power of correction algorithms may be achieved using GPGPUs. In this paper, we evaluate the achievable performance for a short-range proximity effect correction algorithm using GPGPUs.

Keywords

E-beam lithography Proximity effect correction PEC short-range proximity effect GPGPUs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, T., Hattori, Y., Iijima, T., Anze, H., Shimizu, S.O.K.T., Matsuki, K., Tojo, H.I., Takigawa, T.: High-accuracy proximity effect correction for mask writing. Japanese Journal of Applied Physics 46(2), 826–833 (2007)CrossRefGoogle Scholar
  2. 2.
    Boegli, V., Johnson, L., Kao, H., Veneklasen, L., Hofmann, U., Finkelstein, I., Stovall, S., Rishton, S.: Implementation of real-time proximity effect correction in a raster shaped beam tool. Papers from the 44th International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication, vol. 18, pp. 3138–3142 (November 2000)Google Scholar
  3. 3.
    Bojko, R.J., Li, J., He, L., Baehr-Jones, T., Hochberg, M., Aida, Y.: Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 29(6), 06F3091–06F3096 (2011)Google Scholar
  4. 4.
    Crandall, R., Hofmann, U., Lozes, R.L.: Contrast limitations in electron-beam lithography. Papers from the 43rd International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication, AVS, vol. 17, pp. 2945–2947 (November 1999)Google Scholar
  5. 5.
    Dal’zotto, B., Dugourd, H., Lerme, M., Méot, F.: Advances in proximity effect measurement and correction in electron beam lithography. Microelectronic Engineering 3(1-4), 105–112 (1985)CrossRefGoogle Scholar
  6. 6.
    Eisenmann, H., Waas, T., Hartmann, H.: Proxecco - proximity effect correction by convolution. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 11(6), 2741–2745 (1993)CrossRefGoogle Scholar
  7. 7.
    Keil, K., Hauptmann, M., Kretz, J., Constancias, C., Pain, L., Bartha, J.-W.: Resolution and total blur: Correlation and focus dependencies in e-beam lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 27(6), 2722–2726 (2009)CrossRefGoogle Scholar
  8. 8.
    Klimpel, T., Schulz, M., Zimmermann, R., Stock, H.-J., Zepka, A.: Model based hybrid proximity effect correction scheme combining dose modulation and shape adjustments. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 29(6),06F315 – 06F315 (2011)Google Scholar
  9. 9.
    Lee, S.-Y., Anupongpaibool, N.: Optimization of distributed implementation of grayscale electron-beam proximity effect correction on a temporally heterogeneous cluster. In: Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS 2005) - Workshop 13, vol. 14. IEEE Computer Society (2005)Google Scholar
  10. 10.
    Marrian, C.R.K., Dobisz, E.A., Dagata, J.A.: Electron-beam lithography with the scanning tunneling microscope. Journal of Vacuum Science & Technology B 10(6), 2877–2881 (1992)CrossRefGoogle Scholar
  11. 11.
    Ogino, K., Hoshino, H., Machida, Y., Osawa, M., Arimoto, H., Takahashi, K., Yamashita, H.: High-performance proximity effect correction for sub-70 nm design rule system on chip devices in 100 kv electron projection lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 21(6), 2663–2667 (2003)CrossRefGoogle Scholar
  12. 12.
    Owen, G.: Methods for proximity effect correction in electron lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 8(6), 1889–1892 (1990)CrossRefGoogle Scholar
  13. 13.
    Owen, G., Rissman, P.: Proximity effect correction for electron beam lithography by equalization of background dose. Journal of Applied Physics 54(6), 3573–3581 (1983)CrossRefGoogle Scholar
  14. 14.
    Parikh, M.: Corrections to proximity effects in electron beam lithography. ii. implementation. Journal of Applied Physics 50(6), 4378–4382 (1979)CrossRefGoogle Scholar
  15. 15.
    Pavkovich, J.M.: Proximity effect correction calculations by the integral equation approximate solution method. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 4(1), 159–163 (1986)CrossRefGoogle Scholar
  16. 16.
    Rio, D., Constancias, C., Saied, M., Icard, B., Pain, L.: Study on line edge roughness for electron beam acceleration voltages from 50 to 5 kV. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 27(6), 2512–2517 (2009)CrossRefGoogle Scholar
  17. 17.
    Rosenfield, M., Rishton, S., Kern, D., Seeger, D., Whiting, C.: A study of proximity effects at high electron-beam voltages for x-ray mask fabrication part 1: Additive mask processes. Microelectronic Engineering 13(1-4), 165–172 (1991)CrossRefGoogle Scholar
  18. 18.
    Schäfer, A., Fey, D.: High performance stencil code algorithms for gpgpus. Procedia Computer Science 4(0), 2027–2036 (2011)CrossRefGoogle Scholar
  19. 19.
    Schneider, M., Fey, D., Kapusi, D., Machleidt, T.: Performance comparison of designated preprocessing white light interferometry algorithms on emerging multi- and many-core architectures. Procedia Computer Science 4(0), 2037–2046 (2011)CrossRefGoogle Scholar
  20. 20.
    Seidler, R., Schmidt, M., Schäfer, A., Fey, D.: Comparison of selected parallel path planning algorithms on gpgpus and multi-core. In: Proceedings of the Annual International Conference on Advances in Distributed and Parallel Computing, pp. A133–A139 (November 2010)Google Scholar
  21. 21.
    Yamashita, H., Yamamoto, J., Koba, F., Arimoto, H.: Proximity effect correction using blur map in electron projection lithography. In: Advanced Lithography Applications, vol. 23, pp. 3188–3192 (December 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Max Schneider
    • 1
  • Nikola Belic
    • 2
  • Christoph Sambale
    • 2
  • Ulrich Hofmann
    • 2
  • Dietmar Fey
    • 1
  1. 1.Friedrich-Alexander-University Erlangen-NurembergErlangenGermany
  2. 2.GenISys GmbHTaufkirchenGermany

Personalised recommendations