Skip to main content

Automatic Selection of Processing Units for Coprocessing in Databases

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNISA,volume 7503)

Abstract

Specialized processing units such as GPUs or FPGAs provide great opportunities to speed up database operations by exploiting parallelism and relieving the CPU. But utilizing coprocessors efficiently poses major challenges to developers. Besides finding fine-granular data parallel algorithms and tuning them for the available hardware, it has to be decided at runtime which (co)processor should be chosen to execute a specific task. Depending on input parameters, wrong decisions can lead to severe performance degradations since involving coprocessors introduces a significant overhead, e.g., for data transfers. In this paper, we present a framework that automatically learns and adapts execution models for arbitrary algorithms on any (co)processor to find break-even points and support scheduling decisions. We demonstrate its applicability for three common use cases in modern database systems and show how their performance can be improved with wise scheduling decisions.

Keywords

  • Execution Time
  • Child Node
  • Batch Size
  • Schedule Decision
  • Automatic Selection

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-33074-2_5
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   74.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-33074-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   95.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gregg, C., Hazelwood, K.: Where is the data? why you cannot debate cpu vs. gpu performance without the answer. In: ISPASS, pp. 134–144. IEEE (2011)

    Google Scholar 

  2. Govindaraju, N., Gray, J., Kumar, R., Manocha, D.: Gputerasort: high performance graphics co-processor sorting for large database management. In: SIGMOD, pp. 325–336. ACM (2006)

    Google Scholar 

  3. AMD: AMD Accelerated Parallel Processing (APP) SDK, Samples & Demos, http://developer.amd.com/sdks/AMDAPPSDK/samples/Pages/default.aspx

  4. Hellerstein, J.M., Naughton, J.F., Pfeffer, A.: Generalized Search Trees for Database Systems. In: VLDB, pp. 562–573. Morgan Kaufmann Publishers Inc. (1995)

    Google Scholar 

  5. Beier, F., Kilias, T., Sattler, K.U.: Gist scan acceleration using coprocessors. In: DaMoN, pp. 63–69. ACM (2012)

    Google Scholar 

  6. Abadi, D.J., Madden, S.R., Hachem, N.: Column-stores vs. row-stores: how different are they really? In: SIGMOD, pp. 967–980. ACM (2008)

    Google Scholar 

  7. French, C.D.: ”One size fits all” database architectures do not work for DSS. In: SIGMOD, pp. 449–450. ACM (1995)

    Google Scholar 

  8. Boncz, P., Zukowski, M., Nes, N.: MonetDB/X100: Hyper-pipelining query execution. In: CIDR, pp. 225–237. VLDB Endowment (2005)

    Google Scholar 

  9. Stonebraker, M., Abadi, D.: Others.: C-store: a column-oriented DBMS. In: VLDB, pp. 553–564. VLDB Endowment (2005)

    Google Scholar 

  10. Krueger, J., Kim, C., Grund, M., Satish, N.: Fast updates on read-optimized databases using multi-core CPUs. J. VLDB Endowment, 61–72 (2011)

    Google Scholar 

  11. Ding, S., He, J., Yan, H., Suel, T.: Using graphics processors for high performance IR query processing. In: WWW, pp. 421–430. ACM (2009)

    Google Scholar 

  12. Wu, D., Zhang, F., Ao, N., Wang, G., Liu, X., Liu, J.: Efficient lists intersection by cpu-gpu cooperative computing. In: IPDPS Workshops, pp. 1–8. IEEE (2010)

    Google Scholar 

  13. Hoberock, J., Bell, N.: Thrust: A Parallel Template Library, Version 1.3.0 (2010)

    Google Scholar 

  14. Nvidia: Nvidia CUDA, http://developer.nvidia.com/cuda-toolkit

  15. Krueger, J., Grund, M., Jaeckel, I., Zeier, A., Plattner, H.: Applicability of GPU Computing for Efficient Merge in In-Memory Databases. In: ADMS. VLDB Endowment (2011)

    Google Scholar 

  16. Breß, S., Mohammad, S., Schallehn, E.: Self-tuning distribution of db-operations on hybrid cpu/gpu platforms. In: Grundlagen von Datenbanken, CEUR-WS, pp. 89–94 (2012)

    Google Scholar 

  17. Anthony Ralston, P.R.: A first course in numerical analysis, 2nd edn., vol. 73, p. 251. Dover Publications (2001)

    Google Scholar 

  18. Zhang, N., Haas, P.J., Josifovski, V., Lohman, G.M., Zhang, C.: Statistical learning techniques for costing xml queries. In: VLDB, pp. 289–300. VLDB Endowment (2005)

    Google Scholar 

  19. ALGLIB Project: ALGLIB, http://www.alglib.net/

  20. Akdere, M., Cetintemel, U., Upfal, E., Zdonik, S.: Learning-based query performance modeling and prediction. Technical report. Department of Computer Science, Brown University (2011)

    Google Scholar 

  21. Lee, V.W., Kim, C., et al.: Debunking the 100X GPU vs. CPU myth: an evaluation of throughput computing on CPU and GPU. In: SIGARCH Comput. Archit. News, pp. 451–460. ACM (2010)

    Google Scholar 

  22. Zidan, M.A., Bonny, T., Salama, K.N.: High performance technique for database applications using a hybrid gpu/cpu platform. In: VLSI, pp. 85–90. ACM (2011)

    Google Scholar 

  23. He, B., Lu, M., Yang, K., Fang, R., Govindaraju, N.K., Luo, Q., Sander, P.V.: Relational query coprocessing on graphics processors. In: ACM Trans. Database Syst., pp. 1–21. ACM (2009)

    Google Scholar 

  24. Matsunaga, A., Fortes, J.A.B.: On the use of machine learning to predict the time and resources consumed by applications. In: CCGRID, pp. 495–504. IEEE (2010)

    Google Scholar 

  25. Kerr, A., Diamos, G., Yalamanchili, S.: Modeling gpu-cpu workloads and systems. In: GPGPU, pp. 31–42. ACM (2010)

    Google Scholar 

  26. Iverson, M.A., Ozguner, F., Follen, G.J.: Run-time statistical estimation of task execution times for heterogeneous distributed computing. In: HPDC, pp. 263–270. IEEE (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Breß, S., Beier, F., Rauhe, H., Schallehn, E., Sattler, KU., Saake, G. (2012). Automatic Selection of Processing Units for Coprocessing in Databases. In: Morzy, T., Härder, T., Wrembel, R. (eds) Advances in Databases and Information Systems. ADBIS 2012. Lecture Notes in Computer Science, vol 7503. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33074-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33074-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33073-5

  • Online ISBN: 978-3-642-33074-2

  • eBook Packages: Computer ScienceComputer Science (R0)