Fusing Concurrent EEG and fMRI Intrinsic Networks

Abstract

Different imaging modalities are sensitive to different aspects of brain activity, and integrating information from multiple modalities can provide an improved picture of brain dynamics. Electroencephalography (EEG) and functional Magnetic Resonance Imaging (fMRI) are often integrated since they make up for each other’s limitations. FMRI can reveal localized intrinsic networks whose BOLD signals have periods from 100 s to about 10 s. EEG recordings, in contrast, reflect cortical electrical fluctuations with periods up to 20 ms or higher. The following chapter surveys the physiological differences between EEG and fMRI recordings and the implications and results of their integration. EEG-fMRI findings are reviewed in cases where individuals do not participate in an explicit task (e.g. during “rest”). The results are discussed in the context of different methodological approaches to EEG-fMRI integration, including correlation and GLM-based analysis, and ICA decomposition of group EEG-fMRI datasets. The resulting EEG-fMRI networks capture a broader range of brain dynamics compared to EEG or fMRI alone, and can serve as a reference for studies integrating MEG and fMRI.

Keywords

BOLD fMRI EEG ERP Networks Oscillations Intrinsic connectivity Spatiotemporal dynamics Data fusion Source separation 

References

  1. Aguirre GK, Zarahn E, D’Esposito M (1998) The variability of human, BOLD hemodynamic responses. NeuroImage 8:360–369CrossRefGoogle Scholar
  2. Ahlfors SP, Simpson GV (2004) Geometrical interpretation of fMRI-guided MEG/EEG inverse estimates. NeuroImage 22(1):323–332CrossRefGoogle Scholar
  3. Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21(10):1133–1145CrossRefGoogle Scholar
  4. Beckmann CF, Smith SM (2005) Tensorial extensions of independent component analysis for multisubject FMRI analysis. NeuroImage 25(1):294–311CrossRefGoogle Scholar
  5. Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7(6):1129–1159CrossRefGoogle Scholar
  6. Berger H (1929) Uber das elektrenkephalogramm des menschen. Eur Arch Psychiatry Clin Neurosci 87:527–570Google Scholar
  7. Bollimunta A, Mo J, Schroeder CE, Ding M (2011) Neuronal mechanisms and attentional modulation of corticothalamic alpha oscillations. J Neurosci 31(13):4935–4943. doi:10.1523/JNEUROSCI.5580-10.2011 CrossRefGoogle Scholar
  8. Bridwell DA, Wu L, Eichele T, Calhoun VD (2013) The spatiospectral characterization of brain networks: fusing concurrent EEG spectra and fMRI maps. NeuroImage 1(69):101–111CrossRefGoogle Scholar
  9. Buxton RB (2010) Interpreting oxygenation-based neuroimaging signals: the importance and the challenge of understanding brain oxygen metabolism. Front Neuroenergetics 2:1–15Google Scholar
  10. Buxton RB, Uludag K, Dubowitz DJ, Liu TT (2004) Modeling the hemodynamic response to brain activation. NeuroImage 23(Suppl 1):S220–S233CrossRefGoogle Scholar
  11. Calhoun V, Adali T (2012) Multi-subject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery. IEEE Rev Biomed Eng 5:60–72CrossRefGoogle Scholar
  12. Calhoun VD, Adali T, Pearlson GD, Kiehl KA (2006) Neuronal chronometry of target detection: fusion of hemodynamic and event-related potential data. NeuroImage 30(2):544–553CrossRefGoogle Scholar
  13. Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001) A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 14(3):140–151CrossRefGoogle Scholar
  14. Calhoun VD, Liu J, Adalı T (2009) A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. NeuroImage 45(1 Suppl):S163CrossRefGoogle Scholar
  15. Calhoun VD, Pekar JJ, McGinty VB, Adali T, Watson TD, Pearlson GD (2002) Different activation dynamics in multiple neural systems during simulated driving. Hum Brain Mapp 16(3):158–167CrossRefGoogle Scholar
  16. Carter AR, Astafiev SV, Lang CE, Connor LT, Rengachary J, Strube MJ, Corbetta M (2010) Resting inter-hemispheric fMRI connectivity predicts performance after stroke. Ann Neurol 67(3):365–375Google Scholar
  17. Chauveau N, Franceries X, Doyon B, Rigaud B, Morucci JP, Celsis P (2004) Effects of skull thickness, anisotropy, and inhomogeneity on forward EEG/ERP computations using a spherical three-dimensional resistor mesh model. Hum Brain Mapp 21(2):86–97CrossRefGoogle Scholar
  18. Cohen D, Cuffin BN (1983) Demonstration of useful differences between magnetoencephalogram and electroencephalogram. Electroencephalogr Clin Neurophysiol 56(1):38–51CrossRefGoogle Scholar
  19. Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the human brain: from environment to theory of mind. Neuron 58(3):306–324. doi:10.1016/j.neuron.2008.04.017 CrossRefGoogle Scholar
  20. Cuffin BN (1993) Effects of local variations in skull and scalp thickness on EEG’s and MEG’s. IEEE Trans Biomed Eng 40(1):42–48CrossRefGoogle Scholar
  21. de Munck JC, Goncalves SI, Huijboom L, Kuijer JPA, Pouwels PJW, Heethaar RM, da Lopes Silva FH (2007) The hemodynamic response of the alpha rhythm: an EEG/fMRI study. NeuroImage 35(3):1142–1151CrossRefGoogle Scholar
  22. de Munck JC, Goncalves SI, Mammoliti R, Heethaar RM, da Lopes Silva FH (2009) Interactions between different EEG frequency bands and their effect on alpha-fMRI correlations. NeuroImage 47(1):69–76CrossRefGoogle Scholar
  23. Debener S, Ullsperger M, Siegel M, Engel AK (2006) Single-trial EEG-fMRI reveals the dynamics of cognitive function. Trends Cogn Sci 10(12):558–563CrossRefGoogle Scholar
  24. Deco G, Jirsa VK, McIntosh AR (2011) Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat Rev Neurosci 12(1):43–56. doi:10.1038/nrn2961 CrossRefGoogle Scholar
  25. Edelman GM, Tononi G (2000) A universe of consciousness. Basic Books, New YorkGoogle Scholar
  26. Eichele T, Calhoun VD, Debener S (2009) Mining EEG–fMRI using independent component analysis. Int J Psychophysiol 73(1):53–61. doi:10.1016/j.ijpsycho.2008.12.018 CrossRefGoogle Scholar
  27. Eichele T, Rachakonda S, Brakedal B, Eikeland R, Calhoun VD (2011) EEGIFT: group independent component analysis for event-related EEG data. Comput Intell Neurosci 2011:9CrossRefGoogle Scholar
  28. Ekstrom A (2010) How and when the fMRI BOLD signal relates to underlying neural activity: the danger in dissociation. Brain Res Rev 62(2):233–244CrossRefGoogle Scholar
  29. Erhardt EB, Rachakonda S, Bedrick EJ, Allen EA, Adali T, Calhoun VD (2011) Comparison of multi-subject ICA methods for analysis of fMRI data. Hum Brain Mapp 32(12):2075–2095. doi:10.1002/hbm.21170 CrossRefGoogle Scholar
  30. Esposito F, Scarabino T, Hyvarinen A, Himberg J, Formisano E, Comani S, Di Salle F (2005) Independent component analysis of fMRI group studies by self-organizing clustering. NeuroImage 25(1):193–205CrossRefGoogle Scholar
  31. Goense JBM, Logothetis NK (2008) Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr Biol 18(9):631–640CrossRefGoogle Scholar
  32. Goldman RI, Stern JM, Engel J, Cohen MS (2002) Simultaneous EEG and fMRI of the alpha rhythm. NeuroReport 13(18):2487–2492. doi:10.1097/00001756-200212200-00022 CrossRefGoogle Scholar
  33. Guo Y, Pagnoni G (2008) A unified framework for group independent component analysis for multi-subject fMRI data. NeuroImage 42(3):1078–1093CrossRefGoogle Scholar
  34. Handwerker DA, Ollinger JM, D’Esposito M (2004) Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. NeuroImage 21(4):1639–1651CrossRefGoogle Scholar
  35. Heeger DJ, Ress D (2002) What does fMRI tell us about neuronal activity? Nat Rev Neurosci 3:142–150CrossRefGoogle Scholar
  36. Hyvarinen A, Karhunen J, Oja E (2001) Independent component analysis. Wiley, New YorkCrossRefGoogle Scholar
  37. Klimesch W, Sauseng P, Hanslmayr S (2007) EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev 53(1):63–88. doi:10.1016/j.brainresrev.2006.06.003 CrossRefGoogle Scholar
  38. Lamme VAF, Roelfsema PR (2000) The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci 23(11):571–579CrossRefGoogle Scholar
  39. Laufs H, Krakow K, Sterzer P, Eger E, Beyerle A, Salek-Haddadi A, Kleinschmidt A (2003) Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci USA 100(19):11053CrossRefGoogle Scholar
  40. Lin FH, Belliveau JW, Dale AM, Hämäläinen MS (2005) Distributed current estimates using cortical orientation constraints. Hum Brain Mapp 27(1):1–13CrossRefGoogle Scholar
  41. Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 453(7197):869–878CrossRefGoogle Scholar
  42. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157CrossRefGoogle Scholar
  43. Luo Q, Glover GH (2012) Influence of dense-array EEG cap on FMRI signal. Magn Reson Med 68(3):807–815CrossRefGoogle Scholar
  44. Makeig S, Debener S, Onton J, Delorme A (2004) Mining event-related brain dynamics. Trends Cogn Sci 8(5):204–210CrossRefGoogle Scholar
  45. Malonek D, Grinvald A (1996) Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science 272(5261):551–554CrossRefGoogle Scholar
  46. Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M (2007) Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci 104(32):13170CrossRefGoogle Scholar
  47. McKeown MJ, Makeig S, Brown GG, Jung TP, Kindermann SS, Bell AJ, Sejnowski TJ (1998) Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp 6:160–629CrossRefGoogle Scholar
  48. Mizuhara H, Wang L-Q, Kobayashi K, Yamaguchi Y (2004) A long-range cortical network emerging with theta oscillation in a mental task. NeuroReport 15(8):1233–1238. doi:10.1097/01.wnr.0000126755.09715.b3 CrossRefGoogle Scholar
  49. Mo J, Schroeder CE, Ding M (2011) Attentional modulation of alpha oscillations in macaque inferotemporal cortex. J Neurosci 31(3):878–882. doi:10.1523/JNEUROSCI.5295-10.2011 CrossRefGoogle Scholar
  50. Moosmann M, Ritter P, Krastel I, Brink A, Thees S, Blankenburg F, Villringer A (2003) Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy. NeuroImage 20(1):145–158. doi:10.1016/S1053-8119(03)00344-6 CrossRefGoogle Scholar
  51. Niedermeyer E (1997) Alpha rhythms as physiological and abnormal phenomena. Int J Psychophysiol 26(1–3):31–49CrossRefGoogle Scholar
  52. Nunez PL (2000) Toward a quantitative description of large-scale neocortical dynamic function and EEG. Behav Brain Sci 23(3):371–398CrossRefGoogle Scholar
  53. Nunez P, Srinivasan R (2006) Electric fields of the brain: the neurophysics of EEG, 2nd edn. Oxford University Press, New YorkCrossRefGoogle Scholar
  54. Nunez P, Wingeier BM, Silbertein RB (2001) Spatial-temporal structures of human alpha rhythms: theory, microcurrent sources, multiscale measurements, and global binding of local networks. Hum Brain Mapp 13(3):125–164CrossRefGoogle Scholar
  55. O’Reilly JX, Woolrich MW, Behrens TEJ, Smith SM, Johansen-Berg H (2012) Tools of the trade: psychophysiological interactions and functional connectivity. Soc Cogn Affect Neurosci 7(5):604–609CrossRefGoogle Scholar
  56. Plis SM, Calhoun VD, Weisend MP, Eichele T, Lane T (2010) MEG and fMRI Fusion for non-linear estimation of neural and BOLD signal changes. Front Neuroinform 4:1–17. doi:10.3389/fninf.2010.00114 CrossRefGoogle Scholar
  57. Porcaro C, Ostwald D, Bagshaw AP (2010) Functional source separation improves the quality of single trial visual evoked potentials recorded during concurrent EEG-fMRI. NeuroImage 1:112–123CrossRefGoogle Scholar
  58. Porcaro C, Ostwald D, Hadjipapas A, Barnes GR, Bagshaw AP (2011) The relationship between the visual evoked potential and the gamma band investigated by blind and semi-blind methods. NeuroImage 56(3):1059–1071CrossRefGoogle Scholar
  59. Ritter P, Villringer A (2006) Simultaneous EEG-fMRI. Neurosci Biobehav Rev 30:823–838CrossRefGoogle Scholar
  60. Sadaghiani S, Scheeringa R, Lehongre K, Morillon B, Giraud A-L, Kleinschmidt A (2010) Intrinsic connectivity networks, alpha oscillations, and tonic alertness: a simultaneous electroencephalography/functional magnetic resonance imaging study. J Neurosci 30(30):10243–10250. doi:10.1523/JNEUROSCI.1004-10.2010 CrossRefGoogle Scholar
  61. Sammer G, Blecker C, Gebhardt H, Bischoff M, Stark R, Morgen K, Vaitl D (2007) Relationship between regional hemodynamic activity and simultaneously recorded EEG-theta associated with mental arithmetic-induced workload. Hum Brain Mapp 28(8):793–803. doi:10.1002/hbm.20309 CrossRefGoogle Scholar
  62. Scheeringa R, Bastiaansen M, Petersson KM, Oostenveld R, Norris DG, Hagoort P (2008) Frontal theta EEG activity correlates negatively with the default mode network in resting state. Int J Psychophysiol 67(3):242–251CrossRefGoogle Scholar
  63. Scheeringa R, Petersson KM, Kleinschmidt A, Jensen O, Bastiaansen MCM (2012) EEG alpha power modulation of fMRI resting state connectivity. Brain Connectivity 2:254–264CrossRefGoogle Scholar
  64. Scheeringa R, Fries P, Petersson K-M, Oostenveld R, Grothe I, Norris DG, Bastiaansen MCM (2011) Neuronal dynamics underlying high- and low-frequency EEG oscillations contribute independently to the human BOLD signal. Neuron 69(3):572–583. doi:10.1016/j.neuron.2010.11.044 CrossRefGoogle Scholar
  65. Schmithorst VJ, Holland SK (2004) Comparison of three methods for generating group statistical inferences from independent component analysis of functional magnetic resonance imaging data. J Magn Reson Imaging 19(3):365–368Google Scholar
  66. Siegel M, Donner TH, Engel AK (2012) Spectral fingerprints of large-scale neuronal interactions. Nat Rev Neurosci. doi:10.1038/nrn3137 Google Scholar
  67. Srinivasan R (2005) High-resolution EEG: theory and practice. In: Handy T (ed) Event-related potentials: a methods handbook. The MIT Press, CambridgeGoogle Scholar
  68. Srinivasan R, Nunez PL, Tucker DM, Silberstein RB, Cadusch PJ (1996) Spatial sampling and filtering of EEG with spline Laplacians to estimate cortical potentials. Brain Topogr 8(4):355–366CrossRefGoogle Scholar
  69. Steffener J, Tabert M, Reuben A, Stern Y (2010) Investigating hemodynamic response variability at the group level using basis functions. NeuroImage 49(3):2113–2122. doi:10.1016/j.neuroimage.2009.11.014 CrossRefGoogle Scholar
  70. Stone JV (2004) Independent component analysis: a tutorial introduction. MIT press, CambridgeGoogle Scholar
  71. Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2(4):229–239CrossRefGoogle Scholar
  72. Wu L, Eichele T, Calhoun VD (2010) Reactivity of hemodynamic responses and functional connectivity to different states of alpha synchrony: a concurrent EEG-fMRI study. NeuroImage 52(4):1252–1260CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Mind Research NetworkAlbuquerqueUSA
  2. 2.Electrical and Computer EngineeringUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations