MEG Studies on Music

Chapter

Abstract

In this chapter we describe and discuss studies that have used musical stimuli or musically trained subjects in order to investigate different aspects of sensory processing and cognition, including auditory and sensorimotor function and multisensory integration. We also include studies that have used music and musical training to study human neuronal plasticity, and clinical applications in conditions such as tinnitus. We highlight the methodological advantages of MEG that are specific for research on auditory processing and for detecting changes through training.

Keywords

MEG Music Auditory processing Mismatch negativity Mental imagery Multisensory integration Training-related plasticity Tinnitus 

References

  1. Abraham WC (2008) Metaplasticity: tuning synapses and networks for plasticity. Nat Rev Neurosci 9(5):387–399CrossRefGoogle Scholar
  2. Boh B, Herholz SC, Lappe C, Pantev C (2011) Processing of complex auditory patterns in musicians and nonmusicians. PLoS ONE 6(7):e21458CrossRefGoogle Scholar
  3. Brattico E, Pallesen KJ, Varyagina O, Bailey C, Anourova I, Jarvenpaa M, Eerola T, Tervaniemi M (2009) Neural discrimination of nonprototypical chords in music experts and laymen: an MEG study. J Cogn Neurosci 21(11):2230–2244CrossRefGoogle Scholar
  4. Eggermont JJ (2007) Pathophysiology of tinnitus. Prog Brain Res 166:19–35CrossRefGoogle Scholar
  5. Fujioka T, Trainor LJ, Large EW, Ross B (2012) Internalized timing of isochronous sounds is represented in neuromagnetic beta oscillations. J Neurosci 32(5):1791–1802CrossRefGoogle Scholar
  6. Fujioka T, Trainor LJ, Ross B, Kakigi R, Pantev C (2004) Musical training enhances automatic encoding of melodic contour and interval structure. J Cogn Neurosci 16(6):1010–1021CrossRefGoogle Scholar
  7. Gunji A, Ishii R, Chau W, Kakigi R, Pantev C (2007) Rhythmic brain activities related to singing in humans. Neuroimage 34(1):426–434CrossRefGoogle Scholar
  8. Hashimoto T, Hirata Y, Kuriki S (2000) Auditory cortex responds in 100 ms to incongruity of melody. NeuroReport 11(12):2799–2801CrossRefGoogle Scholar
  9. Haueisen J, Knösche TR (2001) Involuntary motor activity in pianists evoked by music perception. J Cogn Neurosci 13(6):786–792CrossRefGoogle Scholar
  10. Herholz SC, Boh B, Pantev C (2011) Musical training modulates encoding of higher-order regularities in the auditory cortex. Eur J Neurosci 34(3):524–529CrossRefGoogle Scholar
  11. Herholz SC, Lappe C, Knief A, Pantev C (2008) Neural basis of music imagery and the effect of musical expertise. Eur J Neurosci 28(11):2352–2360CrossRefGoogle Scholar
  12. Herholz SC, Lappe C, Pantev C (2009) Looking for a pattern: An MEG study on the abstract mismatch negativity in musicians and nonmusicians. BMC Neurosci 10(1):42CrossRefGoogle Scholar
  13. Krause V, Schnitzler A, Pollok B (2010) Functional network interactions during sensorimotor synchronization in musicians and non-musicians. Neuroimage 52(1):245–251CrossRefGoogle Scholar
  14. Kuchenbuch A, Paraskevopoulos E, Herholz SC, Pantev C (2012) Electromagnetic correlates of musical expertise in processing of tone patterns. PLoS ONE 7(1):e30171CrossRefGoogle Scholar
  15. Kujala T, Tervaniemi M, Schröger E (2007) The mismatch negativity in cognitive and clinical neuroscience: theoretical and methodological considerations. Biol Psychol 74(1):1–19CrossRefGoogle Scholar
  16. Lappe C, Herholz SC, Trainor LJ, Pantev C (2008) Cortical plasticity induced by short-term unimodal and multimodal musical training. J Neurosci 28(39):9632–9639CrossRefGoogle Scholar
  17. Lappe C, Trainor LJ, Herholz SC, Pantev C (2011) Cortical plasticity induced by short-term multimodal musical rhythm training. PLoS ONE 6(6):e21493CrossRefGoogle Scholar
  18. Maess B, Koelsch S, Gunter TC, Friederici AD (2001) Musical syntax is processed in Broca’s area: an MEG study. Nat Neurosci 4(5):540–545Google Scholar
  19. Näätänen R, Alho K (1995) Mismatch negativity–a unique measure of sensory processing in audition. Int J Neurosci 80(1–4):317–337Google Scholar
  20. Näätänen R, Paavilainen P, Rinne T, Alho K (2007) The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol 118(12):2544–2590CrossRefGoogle Scholar
  21. Okamoto H, Stracke H, Stoll W, Pantev C (2010) Listening to tailor-made notched music reduces tinnitus loudness and tinnitus-related auditory cortex activity. Proc Natl Acad Sci USA 107(3):1207–1210CrossRefGoogle Scholar
  22. Pantev C, Herholz SC (2011) Plasticity of the human auditory cortex related to musical training. Neurosci Biobehav Rev 35(10):2140–2154CrossRefGoogle Scholar
  23. Pantev C, Wollbrink A, Roberts LE, Engelien A, Lütkenhöner B (1999) Short-term plasticity of the human auditory cortex. Brain Res 842(1):192–199CrossRefGoogle Scholar
  24. Paraskevopoulos E, Kuchenbuch A, Herholz SC, Pantev C (2012a) Evidence for training-induced plasticity in multisensory brain structures: an MEG study. PLoS ONE 7(5):e36534CrossRefGoogle Scholar
  25. Paraskevopoulos E, Kuchenbuch A, Herholz SC, Pantev C (2012b) Musical expertise induces audio-visual integration of abstract congruency rules. J Neurosci 32(50):18196–18203CrossRefGoogle Scholar
  26. Paraskevopoulos E, Kuchenbuch A, Herholz SC, Pantev C (2012c) Musical training effects on statistical learning of melodies: an MEG study. Neuropsychologia 50(2):341–349CrossRefGoogle Scholar
  27. Ragert P, Schmidt A, Altenmuller E, Dinse HR (2004) Superior tactile performance and learning in professional pianists: evidence for meta-plasticity in musicians. Eur J Neurosci 19(2):473–478CrossRefGoogle Scholar
  28. Rosenkranz K, Williamon A, Rothwell JC (2007) Motorcortical excitability and synaptic plasticity is enhanced in professional musicians. J Neurosci 27(19):5200–5206CrossRefGoogle Scholar
  29. Schulz M, Ross B, Pantev C (2003) Evidence for training-induced crossmodal reorganization of cortical functions in trumpet players. NeuroReport 14(1):157–161CrossRefGoogle Scholar
  30. Tervaniemi M, Kujala A, Alho K, Virtanen J, Ilmoniemi RJ, Naatanen R (1999) Functional specialization of the human auditory cortex in processing phonetic and musical sounds: A magnetoencephalographic (MEG) study. Neuroimage 9(3):330–336CrossRefGoogle Scholar
  31. Vuust P, Pallesen KJ, Bailey C, van Zuijen TL, Gjedde A, Roepstorff A, Ostergaard L (2005) To musicians, the message is in the meter pre-attentive neuronal responses to incongruent rhythm are left-lateralized in musicians. Neuroimage 24(2):560–564CrossRefGoogle Scholar
  32. Wan CY, Schlaug G (2010) Music making as a tool for promoting brain plasticity across the life span. Neuroscientist 16(5):566–577CrossRefGoogle Scholar
  33. Yasui T, Kaga K, Sakai KL (2009) Language and music: differential hemispheric dominance in detecting unexpected errors in the lyrics and melody of memorized songs. Hum Brain Mapp 30(2):588–601CrossRefGoogle Scholar
  34. Zatorre RJ (2005) Music, the food of neuroscience? Nature 434(7031):312–315CrossRefGoogle Scholar
  35. Zatorre RJ, Chen JL, Penhune VB (2007) When the brain plays music: auditory-motor interactions in music perception and production. Nat Rev Neurosci 8(7):547–558CrossRefGoogle Scholar
  36. Zatorre RJ, Halpern AR (2005) Mental concerts: musical imagery and auditory cortex. Neuron 47(1):9–12CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)BonnGermany
  2. 2.Institut für Biomagnetismus und BiosignalanalyseWestfälische Wilhelms- UniversitätMünsterGermany

Personalised recommendations