Pediatric MEG: Investigating Spatio-Temporal Connectivity of Developing Networks



The extended development of the human brain provides a unique opportunity to study the maturation of cortical networks that subserve sensory and cognitive functions using noninvasive functional neuroimaging techniques. However, considerable challenges have limited the number of functional neuroimaging studies in children. MEG addresses a number of those limitations. MEG provides high temporal and spatial resolution to assess the development of dynamic cortical networks. The technique provides a secure, peaceful testing environment, requires minimal preparation of the child and offers technology to compensate for head movement during scans. We contrast MEG with other functional neuroimaging techniques and describe effective MEG paradigms for testing children. We present MEG as the technique of choice for testing the dynamics of healthy and disordered brain networks.


Pediatric Magnetoencephalography (MEG) Cortical development Long-range connectivity Cortical oscillations Experimental design 



This work was supported in part by the National Institute of Neurological Disorders and Stroke (R21NS072729), the National Institute on Alcohol, Abuse and Alcoholism (P20AA017068), the National Center for Research Resources (5P20RR021938), the National Institute of General Medical Sciences (8P20GM103472).


  1. Atkinson AP, Adolphs R (2011) The neuropsychology of face perception: beyond simple dissociations and functional selectivity. Philos Trans R Soc Lond B Biol Sci 366(1571):1726–1738Google Scholar
  2. Baddeley A (1986) Modularity, mass-action and memory. Q J Exp Psychol A 38(4):527–533Google Scholar
  3. Banaschewski T, Brandeis D (2007) Annotation: what electrical brain activity tells us about brain function that other techniques cannot tell us—a child psychiatric perspective. J Child Psychol Psychiatry 48(5):415–435Google Scholar
  4. Baranek GT, David FJ, Poe MD, Stone WL, Watson LR (2006) Sensory experiences questionnaire: discriminating sensory features in young children with autism, developmental delays, and typical development. J Child Psychol Psychiatry 47(6):591–601Google Scholar
  5. Begleiter H, Porjesz B (2006) Genetics of human brain oscillations. Int J Psychophysiol 60(2):162–171Google Scholar
  6. Berchicci M, Zhang T, Romero L, Peters A, Annett R, Teuscher U, Bertollo M, Okada Y, Stephen J, Comani S (2011) Development of mu rhythm in infants and preschool children. Dev Neurosci 33(2):130–143Google Scholar
  7. Berl MM, Vaidya CJ, Gaillard WD (2006) Functional imaging of developmental and adaptive changes in neurocognition. NeuroImage 30(3):679–691Google Scholar
  8. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541Google Scholar
  9. Brookes MJ, Woolrich M, Luckhoo H, Price D, Hale JR, Stephenson MC, Barnes GR, Smith SM, Morris PG (2011) Investigating the electrophysiological basis of resting state networks using magnetoencephalography. Proc Natl Acad Sci USA 108(40):16783–16788Google Scholar
  10. Bunge SA, Zelazo PD (2006) A brain-based account of the development of rule use in childhood. Curr Dir Psychol Sci 15(3):118–121Google Scholar
  11. Bunge SA, Wright SB (2007) Neurodevelopmental changes in working memory and cognitive control. Curr Opin Neurobiol 17(2):243–250Google Scholar
  12. Bunge SA, Hazeltine E, Scanlon MD, Rosen AC, Gabrieli JD (2002a) Dissociable contributions of prefrontal and parietal cortices to response selection. NeuroImage 17(3):1562–1571Google Scholar
  13. Bunge SA, Dudukovic NM, Thomason ME, Vaidya CJ, Gabrieli JD (2002b) Immature frontal lobe contributions to cognitive control in children: evidence from fMRI. Neuron 33(2):301–311Google Scholar
  14. Burack JA, Iarocci G, Flanagan TD, Bowler DM (2004) On mosaics and melting pots: conceptual considerations of comparison and matching strategies. J Autism Dev Disord 34(1):65–73Google Scholar
  15. Buzsaki G (2006) Rhythms of the Brain. Oxford University Press, USAGoogle Scholar
  16. Byars AW, Holland SK, Strawsburg RH, Bommer W, Dunn RS, Schmithorst VJ, Plante E (2002) Practical aspects of conducting large-scale functional magnetic resonance imaging studies in children. J Child Neurol 17(12):885–890Google Scholar
  17. Cantor DS, Chabot R (2009) QEEG studies in the assessment and treatment of childhood disorders. Clinical EEG Neuroscience 40(2):113–121Google Scholar
  18. Case R (1992) The role of the frontal lobes in the regulation of cognitive development. Brain Cogn 20(1):51–73MathSciNetGoogle Scholar
  19. Casey BJ, Galvan A, Hare TA (2005) Changes in cerebral functional organization during cognitive development. Curr Opin Neurobiol 15(2):239–244Google Scholar
  20. Changeux JP, Danchin A (1976) Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks. Nature 264(5588):705–712Google Scholar
  21. Cheour M, Imada T, Taulu S, Ahonen A, Salonen J, Kuhl P (2004) Magnetoencephalography is feasible for infant assessment of auditory discrimination. Exp Neurol 190(Suppl 1):S44–S51Google Scholar
  22. Chugani HT, Mazziotta JC, Engel J Jr, Phelps ME (1987) The Lennox-Gastaut syndrome: metabolic subtypes determined by 2-deoxy-2[18F]fluoro-D-glucose positron emission tomography. Ann Neurol 21(1):4–13Google Scholar
  23. Church JA, Petersen SE, Schlaggar BL (2010) The “Task B problem” and other considerations in developmental functional neuroimaging. Hum Brain Mapp 31(6):852–862Google Scholar
  24. Church JA, Fair DA, Dosenbach NU, Cohen AL, Miezin FM, Petersen SE, Schlaggar BL (2009) Control networks in paediatric Tourette syndrome show immature and anomalous patterns of functional connectivity. Brain 132(Pt 1):225–238Google Scholar
  25. Ciesielski KT, Harris RJ, Cofer LF (2004) Posterior brain ERP patterns related to the go/no-go task in children. Psychophysiology 41(6):882–892Google Scholar
  26. Ciesielski KT, Hamalainen MS, Lesnik PG, Geller DA, Ahlfors SP (2005) Increased MEG activation in OCD reflects a compensatory mechanism specific to the phase of a visual working memory task. NeuroImage 24(4):1180–1191Google Scholar
  27. Ciesielski KT, Lesnik PG, Savoy RL, Grant EP, Ahlfors SP (2006) Developmental neural networks in children performing a Categorical N-Back Task. NeuroImage 33(3):980–990Google Scholar
  28. Ciesielski KT, Ahlfors SP, Bedrick EJ, Kerwin AA, Hamalainen MS (2010) Top-down control of MEG alpha-band activity in children performing Categorical N-Back Task. Neuropsychologia 48(12):3573–3579Google Scholar
  29. Ciesielski KT, Hamalainen MS, Geller DA, Wilhelm S, Goldsmith TE, Ahlfors SP (2007) Dissociation between MEG alpha modulation and performance accuracy on visual working memory task in obsessive compulsive disorder. Hum Brain Mapp 28(12):1401–1414Google Scholar
  30. Ciesielski KT, Rauch SL, Ahlfors SP, Vangel ME, Wilhelm S, Rosen BR, Hamalainen MS (2012) Role of medial cortical networks for anticipatory processing in obsessive-compulsive disorder. Hum Brain Mapp 33(9):2125–2134Google Scholar
  31. Coffman BA, Kodituwakku P, Kodituwakku EL, Romero L, Sharadamma NM, Stone D, Stephen JM (2012) Primary visual response (M100) delays in adolescents with FASD as measured with MEG. Hum Brain Mapp (In print)Google Scholar
  32. Cohen JD, Perlstein WM, Braver TS, Nystrom LE, Noll DC, Jonides J, Smith EE (1997) Temporal dynamics of brain activation during a working memory task. Nature 386(6625):604–608Google Scholar
  33. Courtney SM, Petit L, Maisog JM, Ungerleider LG, Haxby JV (1998) An area specialized for spatial working memory in human frontal cortex. Science 279(5355):1347–1351Google Scholar
  34. Csibra G, Davis G, Spratling MW, Johnson MH (2000) Gamma oscillations and object processing in the infant brain. Science 290(5496):1582–1585Google Scholar
  35. Cullen KR, Gee DG, Klimes-Dougan B, Gabbay V, Hulvershorn L, Mueller BA, Camchong J, Bell CJ, Houri A, Kumra S, Lim KO, Castellanos FX, Milham MP (2009) A preliminary study of functional connectivity in comorbid adolescent depression. Neurosci Lett 460(3):227–231Google Scholar
  36. D’Esposito M, Postle BR (1999) The dependence of span and delayed-response performance on prefrontal cortex. Neuropsychologia 37(11):1303–1315Google Scholar
  37. Dale AM, Sereno MI (1993) Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J Cogn Neurosci 5:162–176Google Scholar
  38. Dale AM, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD, Halgren E (2000) Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26(1):55–67Google Scholar
  39. Danker-Hopfe H (2011) Growth and development of children with a special focus on sleep. Prog Biophys Mol Biol 107(3):333–338Google Scholar
  40. Donohue SE, Roberts KC, Grent-’t-Jong T, Woldorff MG (2011) The cross-modal spread of attention reveals differential constraints for the temporal and spatial linking of visual and auditory stimulus events. J Neurosci 31(22):7982–7990Google Scholar
  41. Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN, Barnes KA, Dubis JW, Feczko E, Coalson RS, Pruett JR Jr, Barch DM, Petersen SE, Schlaggar BL (2010) Prediction of individual brain maturity using fMRI. Science 329(5997):1358–1361Google Scholar
  42. Durston S, Casey BJ (2006) What have we learned about cognitive development from neuroimaging? Neuropsychologia 44(11):2149–2157Google Scholar
  43. Engle RW, Tuholski SW, Laughlin JE, Conway AR (1999) Working memory, short-term memory, and general fluid intelligence: a latent-variable approach. J Exp Psychol Gen 128(3):309–331Google Scholar
  44. Evans AC (2006) The NIH MRI study of normal brain development. NeuroImage 30(1):184–202Google Scholar
  45. Fair DA, Cohen AL, Power JD, Dosenbach NU, Church JA, Miezin FM, Schlaggar BL, Petersen SE (2009) Functional brain networks develop from a “local to distributed” organization. PLoS Comput Biol 5(5):e1000381MathSciNetGoogle Scholar
  46. Fair DA, Dosenbach NU, Church JA, Cohen AL, Brahmbhatt S, Miezin FM, Barch DM, Raichle ME, Petersen SE, Schlaggar BL (2007) Development of distinct control networks through segregation and integration. Proc Natl Acad Sci USA 104(33):13507–13512Google Scholar
  47. Falter CM, Braeutigam S, Nathan R, Carrington S, Bailey AJ (2012) Enhanced Access to Early Visual Processing of Perceptual Simultaneity in Autism Spectrum Disorders. J Autism Dev DisordGoogle Scholar
  48. Ferree TC, Luu P, Russell GS, Tucker DM (2001) Scalp electrode impedance, infection risk, and EEG data quality. Clin Neurophysiol 112(3):536–544Google Scholar
  49. Fisch B (1991) Spehlmann’s EEG Primer, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  50. Flemming L, Wang Y, Caprihan A, Eiselt M, Haueisen J, Okada Y (2005) Evaluation of the distortion of EEG signals caused by a hole in the skull mimicking the fontanel in the skull of human neonates. Clin Neurophysiol 116(5):1141–1152Google Scholar
  51. Fransson P, Aden U, Blennow M, Lagercrantz H (2010) The functional architecture of the infant brain as revealed by resting-state fMRI. Cereb Cortex 21(1):145–154Google Scholar
  52. Friston KJ, Price CJ (2011) Modules and brain mapping. Cogn Neuropsychol 28(3–4):241–250Google Scholar
  53. Fujioka T, Ross B (2008) Auditory processing indexed by stimulus-induced alpha desynchronization in children. Int J Psychophysiol 68(2):130–140Google Scholar
  54. Gabrieli JD, Poldrack RA, Desmond JE (1998) The role of left prefrontal cortex in language and memory. Proc Natl Acad Sci USA 95(3):906–913Google Scholar
  55. Gage NM, Siegel B, Roberts TP (2003a) Cortical auditory system maturational abnormalities in children with autism disorder: an MEG investigation. Brain Res Dev Brain Res 144(2):201–209Google Scholar
  56. Gage NM, Siegel B, Callen M, Roberts TP (2003b) Cortical sound processing in children with autism disorder: an MEG investigation. NeuroReport 14(16):2047–2051Google Scholar
  57. Gaillard WD, Grandin CB, Xu B (2001) Developmental aspects of pediatric fMRI: considerations for image acquisition, analysis, and interpretation. Neuroimage 13(2):239–249Google Scholar
  58. Gao Y, Glenn AL, Schug RA, Yang Y, Raine A (2009) The neurobiology of psychopathy: a neurodevelopmental perspective. Can J Psychiatry 54(12):813–823Google Scholar
  59. Gevins A, Cutillo B (1993) Spatiotemporal dynamics of component processes in human working memory. Electroencephalogr Clin Neurophysiol 87(3):128–143Google Scholar
  60. Gevins A, Smith ME (2000) Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style. Cereb Cortex 10(9):829–839Google Scholar
  61. Giedd JN, Rapoport JL (2010) Structural MRI of pediatric brain development: what have we learned and where are we going? Neuron 67(5):728–734Google Scholar
  62. Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, Nugent TF 3rd, Herman DH, Clasen LS, Toga AW, Rapoport JL, Thompson PM (2004) Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA 101(21):8174–8179Google Scholar
  63. Goldman-Rakic PS (1987) Development of cortical circuitry and cognitive function. Child Dev 58(3):601–622Google Scholar
  64. Gordon EM, Lee PS, Maisog JM, Foss-Feig J, Billington ME, Vanmeter J, Vaidya CJ (2011) Strength of default mode resting-state connectivity relates to white matter integrity in children. Dev Sci 14(4):738–751Google Scholar
  65. Gozzo Y, Vohr B, Lacadie C, Hampson M, Katz KH, Maller-Kesselman J, Schneider KC, Peterson BS, Rajeevan N, Makuch RW, Constable RT, Ment LR (2009) Alterations in neural connectivity in preterm children at school age. NeuroImage 48(2):458–463Google Scholar
  66. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100(1):253–258Google Scholar
  67. Hagmann P, Sporns O, Madan N, Cammoun L, Pienaar R, Wedeen VJ, Meuli R, Thiran JP, Grant PE (2010) White matter maturation reshapes structural connectivity in the late developing human brain. Proc Natl Acad Sci USA 107(44):19067–19072Google Scholar
  68. Hamalainen M, Hari R (2002) Magnetoencephalographic characterization of dynamic brain activation: basic principles, and methods of data collection and source analysis. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods. Academic Press, AmsterdamGoogle Scholar
  69. Hamalainen MS, Ilmoniemi RJ (1994) Interpreting magnetic fields of the brain: minimum norm estimates. Med Biol Eng Comput 32(1):35–42Google Scholar
  70. Hampson M, Tokoglu F, King RA, Constable RT, Leckman JF (2009) Brain areas coactivating with motor cortex during chronic motor tics and intentional movements. Biol Psychiatry 65(7):594–599Google Scholar
  71. Hansen PC, Kringelbach ML, Salmelin R (eds) (2010) MEG: an introduction to methods. Oxford University Press, New YorkGoogle Scholar
  72. Haxby JV, Petit L, Ungerleider LG, Courtney SM (2000) Distinguishing the functional roles of multiple regions in distributed neural systems for visual working memory. NeuroImage 11(2):145–156Google Scholar
  73. He BJ, Snyder AZ, Vincent JL, Epstein A, Shulman GL, Corbetta M (2007) Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron 53(6):905–918Google Scholar
  74. Heim S, Eulitz C, Kaufmann J, Fuchter I, Pantev C, Lamprecht-Dinnesen A, Matulat P, Scheer P, Borstel M, Elbert T (2000) Atypical organisation of the auditory cortex in dyslexia as revealed by MEG. Neuropsychologia 38(13):1749–1759Google Scholar
  75. Hinton VJ (2002) Ethics of neuroimaging in pediatric development. Brain Cogn 50(3):455–468MathSciNetGoogle Scholar
  76. Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK (2012) Large-scale cortical correlation structure of spontaneous oscillatory activity. Nat Neurosci 15(6):884–890Google Scholar
  77. Horiguchi T, Ohta K, Nishikawa T (2003) An MEG study of P300 activity during a color discrimination task 2: source localization study. Brain Dev 25(4):241–244Google Scholar
  78. Huo X, Wang Y, Kotecha R, Kirtman EG, Fujiwara H, Hemasilpin N, Degrauw T, Rose DF, Xiang J (2011) High gamma oscillations of sensorimotor cortex during unilateral movement in the developing brain: a MEG study. Brain Topogr 23(4):375–384Google Scholar
  79. Huttenlocher PR (1979) Synaptic density in human frontal cortex—developmental changes and effects of aging. Brain Res 163(2):195–205Google Scholar
  80. Huttunen J, Wikstrom H, Salonen O, Ilmoniemi RJ (1999) Human somatosensory cortical activation strengths: comparison between males and females and age-related changes. Brain Res 818(2):196–203Google Scholar
  81. Imada T, Zhang Y, Cheour M, Taulu S, Ahonen A, Kuhl PK (2006) Infant speech perception activates Broca’s area: a developmental magnetoencephalography study. NeuroReport 17(10):957–962Google Scholar
  82. Imperati D, Colcombe S, Kelly C, Di Martino A, Zhou J, Castellanos FX, Milham MP (2011) Differential development of human brain white matter tracts. PLoS ONE 6(8):e23437Google Scholar
  83. Jaffee SR, Price TS (2007) Gene-environment correlations: a review of the evidence and implications for prevention of mental illness. Mole Psychiatry 12(5):432–442Google Scholar
  84. Johnson BW, Crain S, Thornton R, Tesan G, Reid M (2010) Measurement of brain function in pre-school children using a custom sized whole-head MEG sensor array. Clin Neurophysiol 121(3):340–349Google Scholar
  85. Johnson BW, McArthur G, Hautus M, Reid M, Brock J, Castles A, Crain S (2013) Lateralized auditory brain function in children with normal reading ability and in children withdyslexia. Neuropsychologia 51(4):633–641Google Scholar
  86. Johnson MH (2010) Interactive specialization: a domain-general framework for human functional brain development? Dev Cogn Neurosci 1(1):7–21Google Scholar
  87. Jones DT, Mateen FJ, Lucchinetti CF, Jack CR Jr, Welker KM (2010) Default mode network disruption secondary to a lesion in the anterior thalamus. Arch Neurol 68(2):242–247Google Scholar
  88. Jonides J, Schumacher EH, Smith EE, Koeppe RA, Awh E, Reuter-Lorenz PA, Marshuetz C, Willis CR (1998) The role of parietal cortex in verbal working memory. J Neurosci 18(13):5026–5034Google Scholar
  89. Kandel E, Schwartz J, Jessell T (2000) Principles of neural science, 4th edn. McGraw-Hill, New YorkGoogle Scholar
  90. Karmiloff-Smith A (2010) Neuroimaging of the developing brain: taking “developing” seriously. Hum Brain Mapp 31(6):934–941Google Scholar
  91. Kelly C, Biswal BB, Craddock RC, Castellanos FX, Milham MP (2012) Characterizing variation in the functional connectome: promise and pitfalls. Trends Cogn Sci 16(3):181–188Google Scholar
  92. Kelly C, de Zubicaray G, Di Martino A, Copland DA, Reiss PT, Klein DF, Castellanos FX, Milham MP, McMahon K (2009) L-dopa modulates functional connectivity in striatal cognitive and motor networks: a double-blind placebo-controlled study. J Neurosci 29(22):7364–7378Google Scholar
  93. Khan S, Gramfort A, Shetty NR, Kitzbichler MG, Ganesan S, Moran JM, Lee SM, Gabrieli JD, Tager-Flusberg HB, Joseph RM, Herbert MR, Hamalainen MS, Kenet T (2013) Local and long-range functional connectivity is reduced in concert in autism spectrum disorders. Proc Natl Acad Sci USA 110(8):3107–3112Google Scholar
  94. Khundrakpam BS, Reid A, Brauer J, Carbonell F, Lewis J, Ameis S, Karama S, Lee J, Chen Z, Das S, Evans AC (2012) Developmental changes in organization of structural brain networks. Cereb Cortex 23(9):2072–2085Google Scholar
  95. Klimesch W, Sauseng P, Hanslmayr S (2007) EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev 53(1):63–88Google Scholar
  96. Klimesch W, Doppelmayr M, Wimmer H, Gruber W, Rohm D, Schwaiger J, Hutzler F (2001) Alpha and beta band power changes in normal and dyslexic children. Clin Neurophysiol 112(7):1186–1195Google Scholar
  97. Kolev V, Yordanova J, Basar-Eroglu C, Basar E (2002) Age effects on visual EEG responses reveal distinct frontal alpha networks. Clin Neurophysiol 113(6):901–910Google Scholar
  98. Korvenoja A, Huttunen J, Salli E, Pohjonen H, Martinkauppi S, Palva JM, Lauronen L, Virtanen J, Ilmoniemi RJ, Aronen HJ (1999) Activation of multiple cortical areas in response to somatosensory stimulation: combined magnetoencephalographic and functional magnetic resonance imaging. Hum Brain Mapp 8(1):13–27Google Scholar
  99. Kotecha R, Pardos M, Wang Y, Wu T, Horn P, Brown D, Rose D, deGrauw T, Xiang J (2009) Modeling the developmental patterns of auditory evoked magnetic fields in children. PLoS ONE 4(3):e4811Google Scholar
  100. Kotsoni E, Byrd D, Casey BJ (2006) Special considerations for functional magnetic resonance imaging of pediatric populations. J Magn Reson Imaging 23(6):877–886Google Scholar
  101. Koyama MS, Kelly C, Shehzad Z, Penesetti D, Castellanos FX, Milham MP (2010) Reading networks at rest. Cereb Cortex 20(11):2549–2559Google Scholar
  102. Krause CM, Pesonen M, Hamalainen H (2007) Brain oscillatory responses during the different stages of an auditory memory search task in children. NeuroReport 18(3):213–216Google Scholar
  103. Kuhn D (2006) Do cognitive changes accompany developments in the adolescent brain? Perspect Psychol Sci 1:59–67Google Scholar
  104. Kurz MJ, Wilson TW (2011) Neuromagnetic activity in the somatosensory cortices of children with cerebral palsy. Neurosci Lett 490(1):1–5Google Scholar
  105. Kylliainen A, Braeutigam S, Hietanen JK, Swithenby SJ, Bailey AJ (2006) Face and gaze processing in normally developing children: a magnetoencephalographic study. Eur J Neurosci 23(3):801–810Google Scholar
  106. Leach JL, Holland SK (2010) Functional MRI in children: clinical and research applications. Pediatr Radiol 40(1):31–49Google Scholar
  107. Loenneker T, Klaver P, Bucher K, Lichtensteiger J, Imfeld A, Martin E (2011) Microstructural development: organizational differences of the fiber architecture between children and adults in dorsal and ventral visual streams. Hum Brain Mapp 32(6):935–946Google Scholar
  108. Lutter WJ, Maier M, Wakai RT (2006) Development of MEG sleep patterns and magnetic auditory evoked responses during early infancy. Clin Neurophysiol 117(3):522–530Google Scholar
  109. Lutter WJ, Wakai RT, Maier MM, Baryshnikov BV (2004) MEG sleep pattern dependence of auditory evoked fields in young infants. Neurol Clin Neurophysiol 2004:77Google Scholar
  110. Marco EJ, Khatibi K, Hill SS, Siegel B, Arroyo MS, Dowling AF, Neuhaus JM, Sherr EH, Hinkley LN, Nagarajan SS (2012) Children with autism show reduced somatosensory response: an MEG study. Autism Res 5(5):340–351Google Scholar
  111. Myers EH, Hampson M, Vohr B, Lacadie C, Frost SJ, Pugh KR, Katz KH, Schneider KC, Makuch RW, Constable RT, Ment LR (2010) Functional connectivity to a right hemisphere language center in prematurely born adolescents. NeuroImage 51(4):1445–1452Google Scholar
  112. Nelson CA, Monk CS, Lin J, Carver LJ, Thomas KM, Truwit CL (2000) Functional neuroanatomy of spatial working memory in children. Dev Psychol 36(1):109–116Google Scholar
  113. Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M (2004) Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol 115(10):2292–2307Google Scholar
  114. O’Shaughnessy ES, Berl MM, Moore EN, Gaillard WD (2008) Pediatric functional magnetic resonance imaging (fMRI): issues and applications. J Child Neurol 23(7):791–801Google Scholar
  115. Oram Cardy JE, Flagg EJ, Roberts W, Roberts TP (2008) Auditory evoked fields predict language ability and impairment in children. Int J Psychophysiol 68(2):170–175Google Scholar
  116. Orekhova EV, Stroganova TA, Posikera IN, Elam M (2006) EEG theta rhythm in infants and preschool children. Clin Neurophysiol 117(5):1047–1062Google Scholar
  117. Owen AM, McMillan KM, Laird AR, Bullmore E (2005) N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp 25(1):46–59Google Scholar
  118. Paetau R, Ahonen A, Salonen O, Sams M (1995) Auditory evoked magnetic fields to tones and pseudowords in healthy children and adults. J Clin Neurophysiol 12(2):177–185Google Scholar
  119. Papanicolaou AC, Castillo EM, Billingsley-Marshall R, Pataraia E, Simos PG (2005a) A review of clinical applications of magnetoencephalography. Int Rev Neurobiol 68:223–247Google Scholar
  120. Papanicolaou AC, Pataraia E, Billingsley-Marshall R, Castillo EM, Wheless JW, Swank P, Breier JI, Sarkari S, Simos PG (2005b) Toward the substitution of invasive electroencephalography in epilepsy surgery. J Clin Neurophysiol 22(4):231–237Google Scholar
  121. Pataraia E, Feucht M, Lindinger G, Aull-Watschinger S, Baumgartner C (2008) Combined electroencephalography and magnetoencephalography of interictal spikes in benign rolandic epilepsy of childhood. Clin Neurophysiol 119(3):635–641Google Scholar
  122. Paus T (2005) Mapping brain maturation and cognitive development during adolescence. Trends Cogn Sci 9(2):60–68Google Scholar
  123. Paus T, Collins DL, Evans AC, Leonard G, Pike B, Zijdenbos A (2001) Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Res Bull 54(3):255–266Google Scholar
  124. Petrides M (2000) Dissociable roles of mid-dorsolateral prefrontal and anterior inferotemporal cortex in visual working memory. J Neurosci 20(19):7496–7503Google Scholar
  125. Picton TW, Bentin S, Berg P, Donchin E, Hillyard SA, Johnson R Jr, Miller GA, Ritter W, Ruchkin DS, Rugg MD, Taylor MJ (2000) Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology 37(2):127–152Google Scholar
  126. Pihko E, Lauronen L (2004) Somatosensory processing in healthy newborns. Exp Neurol 190(Suppl 1):S2–S7Google Scholar
  127. Pihko E, Nevalainen P, Stephen J, Okada Y, Lauronen L (2009) Maturation of somatosensory cortical processing from birth to adulthood revealed by magnetoencephalography. Clin NeurophysiolGoogle Scholar
  128. Pihko E, Lauronen L, Wikstrom H, Taulu S, Nurminen J, Kivitie-Kallio S, Okada Y (2004) Somatosensory evoked potentials and magnetic fields elicited by tactile stimulation of the hand during active and quiet sleep in newborns. Clin Neurophysiol 115(2):448–455Google Scholar
  129. Poldrack RA (2010) Interpreting developmental changes in neuroimaging signals. Hum Brain Mapp 31(6):872–878Google Scholar
  130. Rahkonen P, Nevalainen P, Lauronen L, Pihko E, Lano A, Vanhatalo S, Pesonen AK, Heinonen K, Raikkonen K, Valanne L, Autti T, Andersson S, Metsaranta M (2013) Cortical somatosensory processing measured by magnetoencephalography predicts neurodevelopment in extremely low gestational age infants. Pediatr Res 73(6):763–771Google Scholar
  131. Raznahan A, Lerch JP, Lee N, Greenstein D, Wallace GL, Stockman M, Clasen L, Shaw PW, Giedd JN (2011) Patterns of coordinated anatomical change in human cortical development: a longitudinal neuroimaging study of maturational coupling. Neuron 72(5):873–884Google Scholar
  132. Richards JE (2005) Localizing cortical sources of event-related potentials in infants’ covert orienting. Dev Sci 8(3):255–278Google Scholar
  133. Roberts TP, Khan SY, Blaskey L, Dell J, Levy SE, Zarnow DM, Edgar JC (2009) Developmental correlation of diffusion anisotropy with auditory-evoked response. NeuroReport 20(18):1586–1591Google Scholar
  134. Rojas DC, Walker JR, Sheeder JL, Teale PD, Reite ML (1998) Developmental changes in refractoriness of the neuromagnetic M100 in children. NeuroReport 9(7):1543–1547Google Scholar
  135. Rojas DC, Maharajh K, Teale PD, Kleman MR, Benkers TL, Carlson JP, Reite ML (2006) Development of the 40 Hz steady state auditory evoked magnetic field from ages 5 to 52. Clin Neurophysiol 117(1):110–117Google Scholar
  136. Rothenberger A (2009) Brain oscillations forever–neurophysiology in future research of child psychiatric problems. J Child Psychol Psychiatry 50(1–2):79–86Google Scholar
  137. Rutter M (2006) Implications of resilience concepts for scientific understanding. Ann NY Acad Sci 1094:1–12Google Scholar
  138. Schlaggar BL, Brown TT, Lugar HM, Visscher KM, Miezin FM, Petersen SE (2002) Functional neuroanatomical differences between adults and school-age children in the processing of single words. Science 296(5572):1476–1479Google Scholar
  139. Schwartz ES, Edgar JC, Gaetz WC, Roberts TP (2010) Magnetoencephalography. Pediatr Radiol 40(1):50–58Google Scholar
  140. Simos PG, Rezaie R, Fletcher JM, Juranek J, Passaro AD, Li Z, Cirino PT, Papanicolaou AC (2011) Functional disruption of the brain mechanism for reading: effects of comorbidity and task difficulty among children with developmental learning problems. Neuropsychology 25(4):520–534Google Scholar
  141. Smith EE, Jonides J (1998) Neuroimaging analyses of human working memory. Proc Natl Acad Sci USA 95(20):12061–12068Google Scholar
  142. Smyser CD, Inder TE, Shimony JS, Hill JE, Degnan AJ, Snyder AZ, Neil JJ (2010) Longitudinal analysis of neural network development in preterm infants. Cereb Cortex 20(12):2852–2862Google Scholar
  143. Sowell ER, Trauner DA, Gamst A, Jernigan TL (2002) Development of cortical and subcortical brain structures in childhood and adolescence: a structural MRI study. Dev Med Child Neurol 44(1):4–16Google Scholar
  144. Sowell ER, Thompson PM, Leonard CM, Welcome SE, Kan E, Toga AW (2004) Longitudinal mapping of cortical thickness and brain growth in normal children. J Neurosci 24(38):8223–8231Google Scholar
  145. Srinivasan R, Winter WR, Ding J, Nunez PL (2007) EEG and MEG coherence: measures of functional connectivity at distinct spatial scales of neocortical dynamics. J Neurosci Methods 166(1):41–52Google Scholar
  146. Stefan H, Hummel C, Scheler G, Genow A, Druschky K, Tilz C, Kaltenhauser M, Hopfengartner R, Buchfelder M, Romstock J (2003) Magnetic brain source imaging of focal epileptic activity: a synopsis of 455 cases. Brain 126(Pt 11):2396–2405Google Scholar
  147. Stephen J, Kodituwakku P, Kodituwakku EL, Romero L, Peters AM, Sharadamma NM, Caprihan A, Coffman BA (2012) Delays in auditory processing identified in preschool children with FASD. Alcohol Clin Exp Res 36(10):1720–1727Google Scholar
  148. Stevens MC, Pearlson GD, Calhoun VD (2009) Changes in the interaction of resting-state neural networks from adolescence to adulthood. Hum Brain Mapp 30(8):2356–2366Google Scholar
  149. Stiles J (2008) The fundamentals of brain development: integrating nature and nurture. Harvard University Press, CambridgeGoogle Scholar
  150. Stiles J, Moses P, Passarotti A, Dick FK, Buxton R (2003) Exploring developmental change in the neural bases of higher cognitive functions: the promise of functional magnetic resonance imaging. Dev Neuropsychol 24(2–3):641–668Google Scholar
  151. Supekar K, Musen M, Menon V (2009) Development of large-scale functional brain networks in children. PLoS Biol 7(7):e1000157Google Scholar
  152. Tamm L, Menon V, Reiss AL (2002) Maturation of brain function associated with response inhibition. J Am Acad Child Adolesc Psychiatry 41(10):1231–1238Google Scholar
  153. Tamnes CK, Ostby Y, Walhovd KB, Westlye LT, Due-Tonnessen P, Fjell AM (2010) Intellectual abilities and white matter microstructure in development: a diffusion tensor imaging study. Hum Brain Mapp 31(10):1609–1625Google Scholar
  154. Taylor MJ, Baldeweg T (2002) Application of EEG, ERP and intracranial recordings to the investigation of cognitive functions in children. Dev Sci 5(3):318–334Google Scholar
  155. Taylor MJ, Mills T, Pang EW (2011) The development of face recognition; hippocampal and frontal lobe contributions determined with MEG. Brain Topogr 24(3–4):261–270Google Scholar
  156. Taylor MJ, Donner EJ, Pang EW (2012) fMRI and MEG in the study of typical and atypical cognitive development. Clin Neurophysiol 42(1–2):19–25Google Scholar
  157. Trainor LJ (2012) Musical experience, plasticity, and maturation: issues in measuring developmental change using EEG and MEG. Ann NY Acad Sci 1252:25–36Google Scholar
  158. Uddin LQ, Supekar K, Menon V (2010) Typical and atypical development of functional human brain networks: insights from resting-state FMRI. Front Syst Neurosci 4:21Google Scholar
  159. Uhlhaas PJ, Roux F, Singer W, Haenschel C, Sireteanu R, Rodriguez E (2009) The development of neural synchrony reflects late maturation and restructuring of functional networks in humans. Proc Natl Acad Sci USA 106(24):9866–9871Google Scholar
  160. Van Dijk KR, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL (2010) Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol 103(1):297–321Google Scholar
  161. Van Essen DC, Anderson CH, Felleman DJ (1992) Information processing in the primate visual system: an integrated systems perspective. Science 255(5043):419–423Google Scholar
  162. Vogel AC, Power JD, Petersen SE, Schlaggar BL (2010) Development of the brain’s functional network architecture. Neuropsychol Rev 20(4):362–375Google Scholar
  163. Wakai RT, Lutter WJ, Chen M, Maier MM (2007) On and Off magnetic auditory evoked responses in early infancy: a possible marker of brain immaturity. Clin Neurophysiol 118(7):1480–1487Google Scholar
  164. Wehner DT, Ahlfors SP, Mody M (2007) Effects of phonological contrast on auditory word discrimination in children with and without reading disability: a magnetoencephalography (MEG) study. Neuropsychologia 45(14):3251–3262Google Scholar
  165. Wehner DT, Hamalainen MS, Mody M, Ahlfors SP (2008) Head movements of children in MEG: quantification, effects on source estimation, and compensation. NeuroImage 40(2):541–550Google Scholar
  166. Wilson TW, Slason E, Asherin R, Kronberg E, Reite ML, Teale PD, Rojas DC (2010) An extended motor network generates beta and gamma oscillatory perturbations during development. Brain Cogn 73(2):75–84Google Scholar
  167. Wilson TW, Slason E, Asherin R, Kronberg E, Teale PD, Reite ML, Rojas DC (2011) Abnormal gamma and beta MEG activity during finger movements in early-onset psychosis. Dev Neuropsychol 36(5):596–613Google Scholar
  168. Yakovlev PI, Lecours A-R (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Blackwell Scientific, Oxford, pp 3–70Google Scholar
  169. Yordanova J, Kolev V, Polich J (2001) P300 and alpha event-related desynchronization (ERD). Psychophysiology 38(1):143–152Google Scholar
  170. Yordanova JY, Kolev VN (1996) Developmental changes in the alpha response system. Electroencephalogr Clin Neurophysiol 99(6):527–538Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General HospitalHarvard Medical SchoolCharlestownUSA
  2. 2.Department of PsychologyUniversity of New MexicoAlbuquerqueUSA
  3. 3.The Mind Research Network and Lovelace Biomedical and Environmental Research InstituteAlbuquerqueUSA

Personalised recommendations