Skip to main content

Temporal and Spectral Signatures of the Default Mode Network

  • Chapter
  • First Online:
Magnetoencephalography

Abstract

The existence of a structured pattern of neuronal activity in the brain at rest has been consistently reported in the neuroscience literature. Multiple techniques, such as fMRI, MEG and EEG, showed that spontaneous, slow fluctuations of cerebral activity are temporally coherent within distributed functional networks resembling those evoked by sensory, motor, and cognitive paradigms. Among these networks, the Default Mode network gained large interest because of its anatomical and functional architecture. In fact, this network seems to reflect the default brain activity at rest and it has been associated with internal mentation, autobiographical memory, thinking about one’s future, theory of mind, self-referential and affective decision making. What processing demands are shared in common across such a variety of tasks is presently unclear, and to disentangle such high level tasks into component processes is challenging. Here, we address some of these aspects by reviewing the current MEG studies on this network. In fact, while MEG data confirm the observed fMRI spatial topography, some new intriguing temporal and frequency properties of this network are revealed. Such findings enrich the original fMRI scenario on the DMN functional roles in terms of internal coupling and cross-network communication in the brain at rest. The Default Mode Network’s internal coupling seems to be characterized by slow frequencies in the alpha and beta range and the cross-network interaction reveals that the DMN plays a central role in the communication across many different resting state networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amodio DM, Frith CD (2006) Meeting of minds: the medial frontal cortex and social cognition. Nat Rev Neurosci 7(4):268–277

    Article  Google Scholar 

  • Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL (2010) Functional-anatomic fractionation of the brain’s default network. Neuron 65(4):550–562

    Article  Google Scholar 

  • Bar M, Aminoff E, Mason M, Fenske M (2007) The units of thought. Hippocampus 17(6):420–428

    Article  Google Scholar 

  • Berger H (1929) Über das Elektroenkephalogram des Menschen. Archives fur Psychiatric 87:527–570

    Article  Google Scholar 

  • Betti V, Della Penna S, de Pasquale F, Mantini D, Marzetti L, Romani GL, Corbetta M (2013) Natural scenes viewing alters the dynamics of functional connectivity in the human brain. Neuron, Available online. http://dx.doi.org/10.1016/j.neuron.2013.06.022. Accessed 25 July 2013, ISSN 0896 6273

  • Boynton GM, Engel SA, Glover GH, Heeger DJ (1996) Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci 16(13):4207–4221

    Google Scholar 

  • Brookes MJ, Hale JR, Zumer JM, Stevenson CM, Francis ST, Barnes GR, Owen JP, Morris PG, Nagarajan SS (2011a) Measuring functional connectivity using MEG: methodology and comparison with fcMRI. Neuroimage 56(3):1082–1104

    Article  Google Scholar 

  • Brookes MJ, Woolrich M, Luckhoo H, Price D, Hale JR, Stephenson MC, Barnes GR, Smith SM, Morris PG (2011b) Investigating the electrophysiological basis of resting state networks using magnetoencephalography. Proc Nat Acad Sci USA 108(40):16783–16788

    Article  Google Scholar 

  • Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-Barke EJ (2009) Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Behav Rev 33(3):279–296

    Article  Google Scholar 

  • Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Annal NY Acad Sci 1124:1–38

    Article  Google Scholar 

  • Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, Andrews-Hanna JR, Sperling RA, Johnson KA (2009) Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci 29(6):1860–1873

    Article  Google Scholar 

  • Buzsaki G (2009) Rhythms of the brain. Oxford University Press, USA

    Google Scholar 

  • Capotosto P, Babiloni C, Romani GL, Corbetta M (2009) Fronto-parietal cortex controls spatial attention through modulation of anticipatory alpha rhythms. J Cogn Neurosci 24(12):2363–2371

    Article  Google Scholar 

  • Castellanos NP, Bajo R, Cuesta P, Villacorta-Atienza JA, Paul N, Garcia-Prieto J, Del-Pozo F, Maestu F (2011) Alteration and reorganization of functional networks: a new perspective in brain injury study. Front Hum Neurosci 5:90

    Article  Google Scholar 

  • Castellanos NP, Paul N, Ordonez VE, Demuynck O, Bajo R, Campo P, Bilbao A, Ortiz T, del-Pozo F, Maestu F (2010) Reorganization of functional connectivity as a correlate of cognitive recovery in acquired brain injury. Brain 133(Pt 8):2365–2381

    Google Scholar 

  • Cordes D, Haunghton VM, Arfanakisa K, Wendtz GJ, Turskia PA, Moritza CH, Quigleya MA, Meyeranda ME (2001) Mapping functionally related regions of brain with functional connectivity MR imaging. Am J Neuroradiol 21(9):1636–1644

    Google Scholar 

  • D’Argembeau A, Comblain C, Van der Linden M (2005) Affective valence and the self-reference effect: influence of retrieval conditions. Br J Psychol 96(Pt 4):457–466

    Article  Google Scholar 

  • Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Nat Acad Sci USA 103(37):13848–13853

    Article  Google Scholar 

  • Darvas F, Leahy R (2007) Functional Imaging of Brain Activity and Connectivity with MEG. In: Jirsa V, McIntosh AR (eds) Handbook of brain connectivity. Springer, Berlin Heidelberg, pp 201–220

    Chapter  Google Scholar 

  • Daselaar SM, Prince SE, Cabeza R (2004) When less means more: deactivations during encoding that predict subsequent memory. Neuroimage 23(3):921–927

    Article  Google Scholar 

  • Daselaar SM, Prince SE, Dennis NA, Hayes SM, Kim H, Cabeza R (2009) Posterior midline and ventral parietal activity is associated with retrieval success and encoding failure. Front Hum Neurosci 3:13

    Article  Google Scholar 

  • De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29(4):1359–1367

    Article  Google Scholar 

  • de Pasquale F, Della Penna S, Snyder AZ, Lewis C, Mantini D, Marzetti L, Belardinelli P, Ciancetta L, Pizzella V, Romani GL, Corbetta M (2010) Temporal dynamics of spontaneous MEG activity in brain networks. Proc Nat Acad Sci USA 107(13):6040–6045

    Article  Google Scholar 

  • de Pasquale F, Della Penna S, Snyder AZ, Marzetti L, Pizzella V, Romani GL, Corbetta M (2012a) A cortical core for dynamic integration of functional networks in the resting human brain. Neuron 74(4):753–764

    Article  Google Scholar 

  • de Pasquale F, Sabatini U, Della Penna S, Sestieri C, Caravasso C, Formisano R, Peran P (2012b) The connectivity of functional cores reveals different degrees of segregation and integration in the brain at rest. Neuroimage 69:51–61

    Article  Google Scholar 

  • Eichele T, Debener S, Calhoun VD, Specht K, Engel AK, Hugdahl K, von Cramon DY, Ullsperger M (2008) Prediction of human errors by maladaptive changes in event-related brain networks. Proc Natl Acad Sci USA 105(16):6173–6178

    Article  Google Scholar 

  • Engel AK, Fries P (2010) Beta-band oscillations–signalling the status quo? Curr Opin Neurobiol 20(2):156–165

    Article  Google Scholar 

  • Ewald A, Marzetti L, Zappasodi F, Meinecke FC, Nolte G (2012) Estimating true brain connectivity from EEG/MEG data invariant to linear and static transformations in sensor space. Neuroimage 60(1):476–488

    Article  Google Scholar 

  • Fransson P, Marrelec G (2008) The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis. Neuroimage 42(3):1178–1184

    Article  Google Scholar 

  • Fries P (2009) Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci 32:209–224

    Article  Google Scholar 

  • Frith U, Frith CD (2003) Development and neurophysiology of mentalizing. Philos Trans R Soc Lond Ser B Biol Sci 358(1431):459–473

    Google Scholar 

  • Gallagher HL, Happe F, Brunswick N, Fletcher PC, Frith U, Frith CD (2000) Reading the mind in cartoons and stories: an fMRI study of ‘theory of mind’ in verbal and nonverbal tasks. Neuropsychologia 38(1):11–21

    Article  Google Scholar 

  • Goldman AI (1992) In defence of the simulation theory. Mind Lang 7(1–2):104–119

    Article  Google Scholar 

  • Greicius M (2008) Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol 21(4):424–430

    Article  Google Scholar 

  • Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Nat Acad Sci USA 100(1):253–258

    Article  Google Scholar 

  • Greicius MD, Supekar K, Menon V, Dougherty RF (2009) Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 19(1):72–78

    Article  Google Scholar 

  • Gross J, Kujala J, Hamalainen M, Timmermann L, Schnitzler A, Salmelin R (2001) Dynamic imaging of coherent sources: studying neural interactions in the human brain. Proc Nat Acad Sci USA 98(2):694–699

    Article  Google Scholar 

  • Guggisberg AG, Honma SM, Findlay AM, Dalal SS, Kirsch HE, Berger MS, Nagarajan SS (2008) Mapping functional connectivity in patients with brain lesions. Annal Neurol 63(2):193–203

    Article  Google Scholar 

  • Gusnard DA, Akbudak E, Shulman GL, Raichle ME (2001) Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci USA 98(7):4259–4264

    Article  Google Scholar 

  • Gusnard DA, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2(10):685–694

    Article  Google Scholar 

  • Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6(7):e159

    Article  Google Scholar 

  • Hassabis D, Maguire EA (2007) Deconstructing episodic memory with construction. Trends Cogn Sci 11(7):299–306

    Article  Google Scholar 

  • Hauk O, Wakeman DG, Henson R (2011) Comparison of noise-normalized minimum norm estimates for MEG analysis using multiple resolution metrics. Neuroimage 54(3):1966–1974

    Article  Google Scholar 

  • He BJ, Snyder AZ, Zempel JM, Smyth MD, Raichle ME (2008) Electrophysiological correlates of the brain’s intrinsic large-scale functional architecture. Proc Nat Acad Sci USA 105(41):16039–16044

    Article  Google Scholar 

  • Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK (2012) Large-scale cortical correlation structure of spontaneous oscillatory activity. Nat Neurosci 15(6):884–890

    Article  Google Scholar 

  • Hironaga N, Ioannides AA (2007) Localization of individual area neuronal activity. Neuroimage 34(4):1519–1534

    Article  Google Scholar 

  • Hu TC, Kahng AB, Albert Tsao C-W (1995) Old bachelor acceptance: a new class of non-monotone threshold accepting methods. ORSA J Comput 7:417–425

    Google Scholar 

  • Ingvar DH (1979) “Hyperfrontal” distribution of the cerebral grey matter flow in resting wakefulness; on the functional anatomy of the conscious state. Acta Neurol Scand 60(1):12–25

    Article  Google Scholar 

  • Ingvar DH (1985) “Memory of the future”: an essay on the temporal organization of conscious awareness. Hum Neurobiol 4(3):127–136

    Google Scholar 

  • Kety SS, Schmidt CF (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest 27(4):476–483

    Article  Google Scholar 

  • Klimesch W (1997) EEG-alpha rhythms and memory processes. Int J Psychophysiol 26(1–3):319–340

    Article  Google Scholar 

  • Kullmann S, Heni M, Veit R, Ketterer C, Schick F, Haring HU, Fritsche A, Preissl H (2012) The obese brain: association of body mass index and insulin sensitivity with resting state network functional connectivity. Hum Brain Mapp 33(5):1052–1061

    Article  Google Scholar 

  • Lane RD, Reiman EM, Ahern GL, Schwartz GE, Davidson RJ (1997) Neuroanatomical correlates of happiness, sadness, and disgust. Am J Psychiatry 154(7):926–933

    Google Scholar 

  • Laufs H, Krakow K, Sterzer P, Eger E, Beyerle A, Salek-Haddadi A, Kleinschmidt A (2003) Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc Nat Acad Sci USA 100(19):11053–11058

    Article  Google Scholar 

  • Liu Z, Fukunaga M, de Zwart JA, Duyn JH (2010) Large-scale spontaneous fluctuations and correlations in brain electrical activity observed with magnetoencephalography. Neuroimage 51(1):102–111

    Article  Google Scholar 

  • Luckhoo H, Hale JR, Stokes MG, Nobre AC, Morris PG, Brookes MJ, Woolrich MW (2012) Inferring task-related networks using independent component analysis in magnetoencephalography. Neuroimage 62(1):530–541

    Article  Google Scholar 

  • Mantini D, Della Penna S, Marzetti L, de Pasquale F, Pizzella V, Corbetta M, Romani GL (2011) A signal-processing pipeline for magnetoencephalography resting-state networks. Brain Connect 1(1):49–59

    Article  Google Scholar 

  • Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M (2007) Electrophysiological signatures of resting state networks in the human brain. Proc Nat Acad Sci USA 104(32):13170–13175

    Article  Google Scholar 

  • Marzetti L, Del Gratta C, Nolte G (2008) Understanding brain connectivity from EEG data by identifying systems composed of interacting sources. Neuroimage 42(1):87–98

    Article  Google Scholar 

  • Marzetti L, Della Penna S, Snyder AZ, Pizzella V, Nolte G, de Pasquale F, Romani GL, Corbetta M (2013) Frequency specific interactions of MEG resting state activity within and across brain networks as revealed by the multivariate interaction measure. Neuroimage 79:172–183

    Article  Google Scholar 

  • Mazoyer B, Zago L, Mellet E, Bricogne S, Etard O, Houde O, Crivello F, Joliot M, Petit L, Tzourio-Mazoyer N (2001) Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res Bull 54(3):287–298

    Article  Google Scholar 

  • McKiernan KA, Kaufman JN, Kucera-Thompson J, Binder JR (2003) A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. J Cogn Neurosci 15(3):394–408

    Article  Google Scholar 

  • Mitchell JP (2006) Mentalizing and Marr: an information processing approach to the study of social cognition. Brain Res 1079(1):66–75

    Article  Google Scholar 

  • Mitchell JP, Macrae CN, Banaji MR (2006) Dissociable medial prefrontal contributions to judgments of similar and dissimilar others. Neuron 50(4):655–663

    Article  Google Scholar 

  • Nir Y, Mukamel R, Dinstein I, Privman E, Harel M, Fisch L, Gelbard-Sagiv H, Kipervasser S, Andelman F, Neufeld MY, Kramer U, Arieli A, Fried I, Malach R (2008) Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex. Nat Neurosci 11(9):1100–1108

    Article  Google Scholar 

  • Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M (2004) Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol Official J Int Fed Clin Neurophysiol 115(10):2292–2307

    Google Scholar 

  • Nolte G, Marzetti L, Valdes Sosa P (2009) Minimum overlap component analysis (MOCA) of EEG/MEG data for more than two sources. J Neurosci Methods 183(1):72–76

    Article  Google Scholar 

  • Nolte G, Meinecke FC, Ziehe A, Muller KR (2006) Identifying interactions in mixed and noisy complex systems. Phys Rev E Stat Nonlinear Soft Matter Phys 73(5 Pt 1):051913

    Google Scholar 

  • Nolte G, Ziehe A, Nikulin VV, Schlogl A, Kramer N, Brismar T, Muller KR (2008) Robustly estimating the flow direction of information in complex physical systems. Phys Rev Lett 100(23):234101

    Article  Google Scholar 

  • Ochsner KN, Beer JS, Robertson ER, Cooper JC, Gabrieli JD, Kihsltrom JF, D’Esposito M (2005) The neural correlates of direct and reflected self-knowledge. Neuroimage 28(4):797–814

    Article  Google Scholar 

  • Ochsner KN, Ray RD, Cooper JC, Robertson ER, Chopra S, Gabrieli JD, Gross JJ (2004) For better or for worse: neural systems supporting the cognitive down- and up-regulation of negative emotion. Neuroimage 23(2):483–499

    Article  Google Scholar 

  • Olsson A, Ochsner KN (2008) The role of social cognition in emotion. Trends in cognitive sciences 12(2):65–71

    Article  Google Scholar 

  • Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98(2):676–682

    Article  Google Scholar 

  • Sakurai K, Takeda Y, Tanaka N, Kurita T, Shiraishi H, Takeuchi F, Nakane S, Sueda K, Koyama T (2010) Generalized spike-wave discharges involve a default mode network in patients with juvenile absence epilepsy: a MEG study. Epilepsy Res 89(2–3):176–184

    Article  Google Scholar 

  • Saxe R, Kanwisher N (2003) People thinking about thinking people. The role of the temporo-parietal junction in “theory of mind”. Neuroimage 19(4):1835–1842

    Article  Google Scholar 

  • Saxe R, Schulz LE, Jiang YV (2006) Reading minds versus following rules: dissociating theory of mind and executive control in the brain. Soc Neurosci 1(3–4):284–298

    Article  Google Scholar 

  • Schacter DL, Addis, DR (2007) The cognitive neuroscience of constructive memory: remembering the past and imagining the future. Philos Trans R Soc London Ser B Biol Sci 362(1481):773–786

    Google Scholar 

  • Schilbach L, Eickhoff SB, Rotarska-Jagiela A, Fink GR, Vogeley K (2008) Minds at rest? social cognition as the default mode of cognizing and its putative relationship to the “default system” of the brain. Conscious Cogn 17(2):457–467

    Article  Google Scholar 

  • Sestieri C, Corbetta M, Romani GL, Shulman GL (2011) Episodic memory retrieval, parietal cortex, and the default mode network: functional and topographic analyses. J Neurosci 31(12):4407–4420

    Article  Google Scholar 

  • Shahbazi Avarvand F, Ewald A, Nolte G (2012) Localizing true brain interactions from EEG and MEG data with subspace methods and modified beamformers. Comput Math Methods Med 2012:402341

    Google Scholar 

  • Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FL, Raichle ME, Peterson S (1997) Common blood flow changes acros visual tasks: II Decreases in cerebral cortex. J Cogn Neurosci 9(5):648–663

    Article  Google Scholar 

  • Singer W (1993) Synchronization of cortical activity and its putative role in information processing and learning. Annu Rev Physiol 55(1):349–374

    Article  Google Scholar 

  • Singh KD, Fawcett IP (2008) Transient and linearly graded deactivation of the human default-mode network by a visual detection task. Neuroimage 41(1):100–112

    Article  Google Scholar 

  • Sokoloff L, Mangold R, Wechsler RL, Kenney C, Kety SS (1955) The effect of mental arithmetic on cerebral circulation and metabolism. J Clin Invest 34(7, Part 1):1101–1108

    Google Scholar 

  • Sporns O, Honey CJ, Kotter R (2007) Identification and classification of hubs in brain networks. PLoS ONE 2(10):e1049

    Article  Google Scholar 

  • Spreng RN, Mar RA, Kim AS (2009) The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J Cogn Neurosci 21(3):489–510

    Article  Google Scholar 

  • Stam CJ, de Haan W, Daffertshofer A, Jones BF, Manshanden I, van Cappellen van Walsum AM, Montez T, Verbunt JP, de Munck JC, van Dijk BW, Berendse HW, Scheltens P (2009) Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain 132 (Pt 1):213–224

    Google Scholar 

  • Stam CJ, Nolte G, Daffertshofer A (2007) Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp 28(11):1178–1193

    Article  Google Scholar 

  • Stam CJ, van Cappellen van Walsum AM, Pijnenburg YA, Berendse HW, de Munck JC, Scheltens P, van Dijk BW (2002) Generalized synchronization of MEG recordings in Alzheimer’s Disease: evidence for involvement of the gamma band. J Clin Neurophysiol Official Publ Am Electroencephalographic Soc 19(6):562–574

    Google Scholar 

  • Tomasi D, Volkow ND (2011) Functional connectivity hubs in the human brain. Neuroimage 57(3):908–917

    Article  Google Scholar 

  • Vanderwal T, Hunyadi E, Grupe DW, Connors CM, Schultz RT (2008) Self, mother and abstract other: an fMRI study of reflective social processing. Neuroimage 41(4):1437–1446

    Article  Google Scholar 

  • Wicker B, Ruby P, Royet JP, Fonlupt P (2003) A relation between rest and the self in the brain? brain research. Brain Res Rev 43(2):224–230

    Article  Google Scholar 

  • Wilson TW, Franzen JD, Heinrichs-Graham E, White ML, Knott NL, Wetzel MW (2013) Broadband neurophysiological abnormalities in the medial prefrontal region of the default-mode network in adults with ADHD. Hum Brain Mapp 34(3):566–574

    Google Scholar 

Download references

Acknowledgements

This work was supported by the European Community’s Seventh Framework Programme (FP7/2007–2013), Grant Agreement No. HEALTH-F2-2008-200728 ‘BrainSynch’, NIH grant MH 71920-06, and the Human Connectome Project (1U54MH091657-01) from the 16 National Institutes of Health Institutes and Centers that support the NIH Blueprint for Neuroscience Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco de Pasquale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Pasquale, F., Marzetti, L. (2014). Temporal and Spectral Signatures of the Default Mode Network. In: Supek, S., Aine, C. (eds) Magnetoencephalography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33045-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33045-2_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33044-5

  • Online ISBN: 978-3-642-33045-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics