Temporal and Spectral Signatures of the Default Mode Network

  • Francesco de Pasquale
  • Laura Marzetti


The existence of a structured pattern of neuronal activity in the brain at rest has been consistently reported in the neuroscience literature. Multiple techniques, such as fMRI, MEG and EEG, showed that spontaneous, slow fluctuations of cerebral activity are temporally coherent within distributed functional networks resembling those evoked by sensory, motor, and cognitive paradigms. Among these networks, the Default Mode network gained large interest because of its anatomical and functional architecture. In fact, this network seems to reflect the default brain activity at rest and it has been associated with internal mentation, autobiographical memory, thinking about one’s future, theory of mind, self-referential and affective decision making. What processing demands are shared in common across such a variety of tasks is presently unclear, and to disentangle such high level tasks into component processes is challenging. Here, we address some of these aspects by reviewing the current MEG studies on this network. In fact, while MEG data confirm the observed fMRI spatial topography, some new intriguing temporal and frequency properties of this network are revealed. Such findings enrich the original fMRI scenario on the DMN functional roles in terms of internal coupling and cross-network communication in the brain at rest. The Default Mode Network’s internal coupling seems to be characterized by slow frequencies in the alpha and beta range and the cross-network interaction reveals that the DMN plays a central role in the communication across many different resting state networks.


Resting state networks Default mode network Functional connectivity Cross-network interaction Frequency signature Independent component analysis 



This work was supported by the European Community’s Seventh Framework Programme (FP7/2007–2013), Grant Agreement No. HEALTH-F2-2008-200728 ‘BrainSynch’, NIH grant MH 71920-06, and the Human Connectome Project (1U54MH091657-01) from the 16 National Institutes of Health Institutes and Centers that support the NIH Blueprint for Neuroscience Research.


  1. Amodio DM, Frith CD (2006) Meeting of minds: the medial frontal cortex and social cognition. Nat Rev Neurosci 7(4):268–277CrossRefGoogle Scholar
  2. Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL (2010) Functional-anatomic fractionation of the brain’s default network. Neuron 65(4):550–562CrossRefGoogle Scholar
  3. Bar M, Aminoff E, Mason M, Fenske M (2007) The units of thought. Hippocampus 17(6):420–428CrossRefGoogle Scholar
  4. Berger H (1929) Über das Elektroenkephalogram des Menschen. Archives fur Psychiatric 87:527–570CrossRefGoogle Scholar
  5. Betti V, Della Penna S, de Pasquale F, Mantini D, Marzetti L, Romani GL, Corbetta M (2013) Natural scenes viewing alters the dynamics of functional connectivity in the human brain. Neuron, Available online. Accessed 25 July 2013, ISSN 0896 6273
  6. Boynton GM, Engel SA, Glover GH, Heeger DJ (1996) Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci 16(13):4207–4221Google Scholar
  7. Brookes MJ, Hale JR, Zumer JM, Stevenson CM, Francis ST, Barnes GR, Owen JP, Morris PG, Nagarajan SS (2011a) Measuring functional connectivity using MEG: methodology and comparison with fcMRI. Neuroimage 56(3):1082–1104CrossRefGoogle Scholar
  8. Brookes MJ, Woolrich M, Luckhoo H, Price D, Hale JR, Stephenson MC, Barnes GR, Smith SM, Morris PG (2011b) Investigating the electrophysiological basis of resting state networks using magnetoencephalography. Proc Nat Acad Sci USA 108(40):16783–16788CrossRefGoogle Scholar
  9. Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-Barke EJ (2009) Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Behav Rev 33(3):279–296CrossRefGoogle Scholar
  10. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Annal NY Acad Sci 1124:1–38CrossRefGoogle Scholar
  11. Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, Andrews-Hanna JR, Sperling RA, Johnson KA (2009) Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci 29(6):1860–1873CrossRefGoogle Scholar
  12. Buzsaki G (2009) Rhythms of the brain. Oxford University Press, USAGoogle Scholar
  13. Capotosto P, Babiloni C, Romani GL, Corbetta M (2009) Fronto-parietal cortex controls spatial attention through modulation of anticipatory alpha rhythms. J Cogn Neurosci 24(12):2363–2371CrossRefGoogle Scholar
  14. Castellanos NP, Bajo R, Cuesta P, Villacorta-Atienza JA, Paul N, Garcia-Prieto J, Del-Pozo F, Maestu F (2011) Alteration and reorganization of functional networks: a new perspective in brain injury study. Front Hum Neurosci 5:90CrossRefGoogle Scholar
  15. Castellanos NP, Paul N, Ordonez VE, Demuynck O, Bajo R, Campo P, Bilbao A, Ortiz T, del-Pozo F, Maestu F (2010) Reorganization of functional connectivity as a correlate of cognitive recovery in acquired brain injury. Brain 133(Pt 8):2365–2381Google Scholar
  16. Cordes D, Haunghton VM, Arfanakisa K, Wendtz GJ, Turskia PA, Moritza CH, Quigleya MA, Meyeranda ME (2001) Mapping functionally related regions of brain with functional connectivity MR imaging. Am J Neuroradiol 21(9):1636–1644Google Scholar
  17. D’Argembeau A, Comblain C, Van der Linden M (2005) Affective valence and the self-reference effect: influence of retrieval conditions. Br J Psychol 96(Pt 4):457–466CrossRefGoogle Scholar
  18. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Nat Acad Sci USA 103(37):13848–13853CrossRefGoogle Scholar
  19. Darvas F, Leahy R (2007) Functional Imaging of Brain Activity and Connectivity with MEG. In: Jirsa V, McIntosh AR (eds) Handbook of brain connectivity. Springer, Berlin Heidelberg, pp 201–220CrossRefGoogle Scholar
  20. Daselaar SM, Prince SE, Cabeza R (2004) When less means more: deactivations during encoding that predict subsequent memory. Neuroimage 23(3):921–927CrossRefGoogle Scholar
  21. Daselaar SM, Prince SE, Dennis NA, Hayes SM, Kim H, Cabeza R (2009) Posterior midline and ventral parietal activity is associated with retrieval success and encoding failure. Front Hum Neurosci 3:13CrossRefGoogle Scholar
  22. De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29(4):1359–1367CrossRefGoogle Scholar
  23. de Pasquale F, Della Penna S, Snyder AZ, Lewis C, Mantini D, Marzetti L, Belardinelli P, Ciancetta L, Pizzella V, Romani GL, Corbetta M (2010) Temporal dynamics of spontaneous MEG activity in brain networks. Proc Nat Acad Sci USA 107(13):6040–6045CrossRefGoogle Scholar
  24. de Pasquale F, Della Penna S, Snyder AZ, Marzetti L, Pizzella V, Romani GL, Corbetta M (2012a) A cortical core for dynamic integration of functional networks in the resting human brain. Neuron 74(4):753–764CrossRefGoogle Scholar
  25. de Pasquale F, Sabatini U, Della Penna S, Sestieri C, Caravasso C, Formisano R, Peran P (2012b) The connectivity of functional cores reveals different degrees of segregation and integration in the brain at rest. Neuroimage 69:51–61CrossRefGoogle Scholar
  26. Eichele T, Debener S, Calhoun VD, Specht K, Engel AK, Hugdahl K, von Cramon DY, Ullsperger M (2008) Prediction of human errors by maladaptive changes in event-related brain networks. Proc Natl Acad Sci USA 105(16):6173–6178CrossRefGoogle Scholar
  27. Engel AK, Fries P (2010) Beta-band oscillations–signalling the status quo? Curr Opin Neurobiol 20(2):156–165CrossRefGoogle Scholar
  28. Ewald A, Marzetti L, Zappasodi F, Meinecke FC, Nolte G (2012) Estimating true brain connectivity from EEG/MEG data invariant to linear and static transformations in sensor space. Neuroimage 60(1):476–488CrossRefGoogle Scholar
  29. Fransson P, Marrelec G (2008) The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis. Neuroimage 42(3):1178–1184CrossRefGoogle Scholar
  30. Fries P (2009) Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci 32:209–224CrossRefGoogle Scholar
  31. Frith U, Frith CD (2003) Development and neurophysiology of mentalizing. Philos Trans R Soc Lond Ser B Biol Sci 358(1431):459–473Google Scholar
  32. Gallagher HL, Happe F, Brunswick N, Fletcher PC, Frith U, Frith CD (2000) Reading the mind in cartoons and stories: an fMRI study of ‘theory of mind’ in verbal and nonverbal tasks. Neuropsychologia 38(1):11–21CrossRefGoogle Scholar
  33. Goldman AI (1992) In defence of the simulation theory. Mind Lang 7(1–2):104–119CrossRefGoogle Scholar
  34. Greicius M (2008) Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol 21(4):424–430CrossRefGoogle Scholar
  35. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Nat Acad Sci USA 100(1):253–258CrossRefGoogle Scholar
  36. Greicius MD, Supekar K, Menon V, Dougherty RF (2009) Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 19(1):72–78CrossRefGoogle Scholar
  37. Gross J, Kujala J, Hamalainen M, Timmermann L, Schnitzler A, Salmelin R (2001) Dynamic imaging of coherent sources: studying neural interactions in the human brain. Proc Nat Acad Sci USA 98(2):694–699CrossRefGoogle Scholar
  38. Guggisberg AG, Honma SM, Findlay AM, Dalal SS, Kirsch HE, Berger MS, Nagarajan SS (2008) Mapping functional connectivity in patients with brain lesions. Annal Neurol 63(2):193–203CrossRefGoogle Scholar
  39. Gusnard DA, Akbudak E, Shulman GL, Raichle ME (2001) Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci USA 98(7):4259–4264CrossRefGoogle Scholar
  40. Gusnard DA, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2(10):685–694CrossRefGoogle Scholar
  41. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6(7):e159CrossRefGoogle Scholar
  42. Hassabis D, Maguire EA (2007) Deconstructing episodic memory with construction. Trends Cogn Sci 11(7):299–306CrossRefGoogle Scholar
  43. Hauk O, Wakeman DG, Henson R (2011) Comparison of noise-normalized minimum norm estimates for MEG analysis using multiple resolution metrics. Neuroimage 54(3):1966–1974CrossRefGoogle Scholar
  44. He BJ, Snyder AZ, Zempel JM, Smyth MD, Raichle ME (2008) Electrophysiological correlates of the brain’s intrinsic large-scale functional architecture. Proc Nat Acad Sci USA 105(41):16039–16044CrossRefGoogle Scholar
  45. Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK (2012) Large-scale cortical correlation structure of spontaneous oscillatory activity. Nat Neurosci 15(6):884–890CrossRefGoogle Scholar
  46. Hironaga N, Ioannides AA (2007) Localization of individual area neuronal activity. Neuroimage 34(4):1519–1534CrossRefGoogle Scholar
  47. Hu TC, Kahng AB, Albert Tsao C-W (1995) Old bachelor acceptance: a new class of non-monotone threshold accepting methods. ORSA J Comput 7:417–425Google Scholar
  48. Ingvar DH (1979) “Hyperfrontal” distribution of the cerebral grey matter flow in resting wakefulness; on the functional anatomy of the conscious state. Acta Neurol Scand 60(1):12–25CrossRefGoogle Scholar
  49. Ingvar DH (1985) “Memory of the future”: an essay on the temporal organization of conscious awareness. Hum Neurobiol 4(3):127–136Google Scholar
  50. Kety SS, Schmidt CF (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest 27(4):476–483CrossRefGoogle Scholar
  51. Klimesch W (1997) EEG-alpha rhythms and memory processes. Int J Psychophysiol 26(1–3):319–340CrossRefGoogle Scholar
  52. Kullmann S, Heni M, Veit R, Ketterer C, Schick F, Haring HU, Fritsche A, Preissl H (2012) The obese brain: association of body mass index and insulin sensitivity with resting state network functional connectivity. Hum Brain Mapp 33(5):1052–1061CrossRefGoogle Scholar
  53. Lane RD, Reiman EM, Ahern GL, Schwartz GE, Davidson RJ (1997) Neuroanatomical correlates of happiness, sadness, and disgust. Am J Psychiatry 154(7):926–933Google Scholar
  54. Laufs H, Krakow K, Sterzer P, Eger E, Beyerle A, Salek-Haddadi A, Kleinschmidt A (2003) Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc Nat Acad Sci USA 100(19):11053–11058CrossRefGoogle Scholar
  55. Liu Z, Fukunaga M, de Zwart JA, Duyn JH (2010) Large-scale spontaneous fluctuations and correlations in brain electrical activity observed with magnetoencephalography. Neuroimage 51(1):102–111CrossRefGoogle Scholar
  56. Luckhoo H, Hale JR, Stokes MG, Nobre AC, Morris PG, Brookes MJ, Woolrich MW (2012) Inferring task-related networks using independent component analysis in magnetoencephalography. Neuroimage 62(1):530–541CrossRefGoogle Scholar
  57. Mantini D, Della Penna S, Marzetti L, de Pasquale F, Pizzella V, Corbetta M, Romani GL (2011) A signal-processing pipeline for magnetoencephalography resting-state networks. Brain Connect 1(1):49–59CrossRefGoogle Scholar
  58. Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M (2007) Electrophysiological signatures of resting state networks in the human brain. Proc Nat Acad Sci USA 104(32):13170–13175CrossRefGoogle Scholar
  59. Marzetti L, Del Gratta C, Nolte G (2008) Understanding brain connectivity from EEG data by identifying systems composed of interacting sources. Neuroimage 42(1):87–98CrossRefGoogle Scholar
  60. Marzetti L, Della Penna S, Snyder AZ, Pizzella V, Nolte G, de Pasquale F, Romani GL, Corbetta M (2013) Frequency specific interactions of MEG resting state activity within and across brain networks as revealed by the multivariate interaction measure. Neuroimage 79:172–183CrossRefGoogle Scholar
  61. Mazoyer B, Zago L, Mellet E, Bricogne S, Etard O, Houde O, Crivello F, Joliot M, Petit L, Tzourio-Mazoyer N (2001) Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res Bull 54(3):287–298CrossRefGoogle Scholar
  62. McKiernan KA, Kaufman JN, Kucera-Thompson J, Binder JR (2003) A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. J Cogn Neurosci 15(3):394–408CrossRefGoogle Scholar
  63. Mitchell JP (2006) Mentalizing and Marr: an information processing approach to the study of social cognition. Brain Res 1079(1):66–75CrossRefGoogle Scholar
  64. Mitchell JP, Macrae CN, Banaji MR (2006) Dissociable medial prefrontal contributions to judgments of similar and dissimilar others. Neuron 50(4):655–663CrossRefGoogle Scholar
  65. Nir Y, Mukamel R, Dinstein I, Privman E, Harel M, Fisch L, Gelbard-Sagiv H, Kipervasser S, Andelman F, Neufeld MY, Kramer U, Arieli A, Fried I, Malach R (2008) Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex. Nat Neurosci 11(9):1100–1108CrossRefGoogle Scholar
  66. Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M (2004) Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol Official J Int Fed Clin Neurophysiol 115(10):2292–2307Google Scholar
  67. Nolte G, Marzetti L, Valdes Sosa P (2009) Minimum overlap component analysis (MOCA) of EEG/MEG data for more than two sources. J Neurosci Methods 183(1):72–76CrossRefGoogle Scholar
  68. Nolte G, Meinecke FC, Ziehe A, Muller KR (2006) Identifying interactions in mixed and noisy complex systems. Phys Rev E Stat Nonlinear Soft Matter Phys 73(5 Pt 1):051913Google Scholar
  69. Nolte G, Ziehe A, Nikulin VV, Schlogl A, Kramer N, Brismar T, Muller KR (2008) Robustly estimating the flow direction of information in complex physical systems. Phys Rev Lett 100(23):234101CrossRefGoogle Scholar
  70. Ochsner KN, Beer JS, Robertson ER, Cooper JC, Gabrieli JD, Kihsltrom JF, D’Esposito M (2005) The neural correlates of direct and reflected self-knowledge. Neuroimage 28(4):797–814CrossRefGoogle Scholar
  71. Ochsner KN, Ray RD, Cooper JC, Robertson ER, Chopra S, Gabrieli JD, Gross JJ (2004) For better or for worse: neural systems supporting the cognitive down- and up-regulation of negative emotion. Neuroimage 23(2):483–499CrossRefGoogle Scholar
  72. Olsson A, Ochsner KN (2008) The role of social cognition in emotion. Trends in cognitive sciences 12(2):65–71CrossRefGoogle Scholar
  73. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98(2):676–682CrossRefGoogle Scholar
  74. Sakurai K, Takeda Y, Tanaka N, Kurita T, Shiraishi H, Takeuchi F, Nakane S, Sueda K, Koyama T (2010) Generalized spike-wave discharges involve a default mode network in patients with juvenile absence epilepsy: a MEG study. Epilepsy Res 89(2–3):176–184CrossRefGoogle Scholar
  75. Saxe R, Kanwisher N (2003) People thinking about thinking people. The role of the temporo-parietal junction in “theory of mind”. Neuroimage 19(4):1835–1842CrossRefGoogle Scholar
  76. Saxe R, Schulz LE, Jiang YV (2006) Reading minds versus following rules: dissociating theory of mind and executive control in the brain. Soc Neurosci 1(3–4):284–298CrossRefGoogle Scholar
  77. Schacter DL, Addis, DR (2007) The cognitive neuroscience of constructive memory: remembering the past and imagining the future. Philos Trans R Soc London Ser B Biol Sci 362(1481):773–786Google Scholar
  78. Schilbach L, Eickhoff SB, Rotarska-Jagiela A, Fink GR, Vogeley K (2008) Minds at rest? social cognition as the default mode of cognizing and its putative relationship to the “default system” of the brain. Conscious Cogn 17(2):457–467CrossRefGoogle Scholar
  79. Sestieri C, Corbetta M, Romani GL, Shulman GL (2011) Episodic memory retrieval, parietal cortex, and the default mode network: functional and topographic analyses. J Neurosci 31(12):4407–4420CrossRefGoogle Scholar
  80. Shahbazi Avarvand F, Ewald A, Nolte G (2012) Localizing true brain interactions from EEG and MEG data with subspace methods and modified beamformers. Comput Math Methods Med 2012:402341Google Scholar
  81. Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FL, Raichle ME, Peterson S (1997) Common blood flow changes acros visual tasks: II Decreases in cerebral cortex. J Cogn Neurosci 9(5):648–663CrossRefGoogle Scholar
  82. Singer W (1993) Synchronization of cortical activity and its putative role in information processing and learning. Annu Rev Physiol 55(1):349–374CrossRefGoogle Scholar
  83. Singh KD, Fawcett IP (2008) Transient and linearly graded deactivation of the human default-mode network by a visual detection task. Neuroimage 41(1):100–112CrossRefGoogle Scholar
  84. Sokoloff L, Mangold R, Wechsler RL, Kenney C, Kety SS (1955) The effect of mental arithmetic on cerebral circulation and metabolism. J Clin Invest 34(7, Part 1):1101–1108Google Scholar
  85. Sporns O, Honey CJ, Kotter R (2007) Identification and classification of hubs in brain networks. PLoS ONE 2(10):e1049CrossRefGoogle Scholar
  86. Spreng RN, Mar RA, Kim AS (2009) The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J Cogn Neurosci 21(3):489–510CrossRefGoogle Scholar
  87. Stam CJ, de Haan W, Daffertshofer A, Jones BF, Manshanden I, van Cappellen van Walsum AM, Montez T, Verbunt JP, de Munck JC, van Dijk BW, Berendse HW, Scheltens P (2009) Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain 132 (Pt 1):213–224Google Scholar
  88. Stam CJ, Nolte G, Daffertshofer A (2007) Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp 28(11):1178–1193CrossRefGoogle Scholar
  89. Stam CJ, van Cappellen van Walsum AM, Pijnenburg YA, Berendse HW, de Munck JC, Scheltens P, van Dijk BW (2002) Generalized synchronization of MEG recordings in Alzheimer’s Disease: evidence for involvement of the gamma band. J Clin Neurophysiol Official Publ Am Electroencephalographic Soc 19(6):562–574Google Scholar
  90. Tomasi D, Volkow ND (2011) Functional connectivity hubs in the human brain. Neuroimage 57(3):908–917CrossRefGoogle Scholar
  91. Vanderwal T, Hunyadi E, Grupe DW, Connors CM, Schultz RT (2008) Self, mother and abstract other: an fMRI study of reflective social processing. Neuroimage 41(4):1437–1446CrossRefGoogle Scholar
  92. Wicker B, Ruby P, Royet JP, Fonlupt P (2003) A relation between rest and the self in the brain? brain research. Brain Res Rev 43(2):224–230CrossRefGoogle Scholar
  93. Wilson TW, Franzen JD, Heinrichs-Graham E, White ML, Knott NL, Wetzel MW (2013) Broadband neurophysiological abnormalities in the medial prefrontal region of the default-mode network in adults with ADHD. Hum Brain Mapp 34(3):566–574Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Neuroscience and Imaging“G. d’Annunzio” University Chieti-PescaraChietiItaly
  2. 2.Institute for Advanced Biomedical Technologies“G. d’Annunzio” University FoundationChietiItaly

Personalised recommendations