NUTMEG: Open Source Software for MEG/EEG Source Reconstruction

  • Johanna M. Zumer
  • Daniel D. E. Wong
  • Adrian G. Guggisberg
  • Srikantan S. Nagarajan
  • Sarang S. Dalal


NUTMEG is an open-source MATLAB-based toolbox for MEG/EEG data. NUTMEG includes many options for source reconstruction, an easily navigable window for exploring source results, several options for source level connectivity computation, statistical evaluation of these source results, and conversion to and from formats of other toolboxes.


MEG Source reconstruction Beamformer Inverse method Time-frequency Evoked responses Bayesian inversion Connectivity Source statistics EEG Intracranial data 



We thank Kensuke Sekihara and Mike Trumpis for their contributions to NUTMEG.


  1. Aguera PE, Jerbi K, Caclin A, Bertrand O (2011) ELAN: a software package for analysis and visualization of MEG, EEG, and LFP signals. Comput Intell Neurosci 158:970Google Scholar
  2. Brookes MJ, Hale JR, Zumer JM, Stevenson CM, Francis ST, Barnes GR, Owen JP, Morris PG, Nagarajan SS (2011) Measuring functional connectivity using MEG: methodology and comparison with fcMRI. NeuroImage 56(3):1082–1104CrossRefGoogle Scholar
  3. Brunet D, Murray MM, Michel CM (2011) Spatiotemporal analysis of multichannel EEG: CARTOOL. Comput Intell Neurosci 813:870Google Scholar
  4. Dalal SS, Zumer JM, Agrawal V, Hild KE, Sekihara K, Nagarajan SS (2004) NUTMEG: A neuromagnetic source reconstruction toolbox. Neurol Clin Neurophysiol 2004:52Google Scholar
  5. Dalal SS, Guggisberg AG, Edwards E, Sekihara K, Findlay AM, Canolty RT, Berger MS, Knight RT, Barbaro NM, Kirsch HE, Nagarajan SS (2008) Five-dimensional neuroimaging: localization of the time-frequency dynamics of cortical activity. NeuroImage 40(4):1686–1700CrossRefGoogle Scholar
  6. Dalal SS, Zumer JM, Guggisberg AG, Trumpis M, Wong DDE, Sekihara K, Nagarajan SS (2011) MEG/EEG source reconstruction, statistical evaluation, and visualization with NUTMEG. Comput Intell Neurosci 758:973Google Scholar
  7. Dang HV, Ng KT (2011) Finite difference neuroelectric modeling software. J Neurosci Methods 198(2):359–363CrossRefGoogle Scholar
  8. Dubovik S, Pignat JM, Ptak R, Aboulafia T, Allet L, Gillabert N, Magnin C, Albert F, Momjian-Mayor I, Nahum L, Lascano AM, Michel CM, Schnider A, Guggisberg AG (2012) The behavioral significance of coherent resting-state oscillations after stroke. NeuroImage 61(1):249–257CrossRefGoogle Scholar
  9. Gouws A, Woods W, Millman R, Morland A, Green G (2009) Dataviewer3D: an open-source, cross-platform multi-modal neuroimaging data visualization tool. Front Neuroinform 3:9CrossRefGoogle Scholar
  10. Gramfort A, Papadopoulo T, Olivi E, Clerc M (2010) OpenMEEG: opensource software for quasistatic bioelectromagnetics. Biomed Eng Online 9(1):45CrossRefGoogle Scholar
  11. Gramfort A, Papadopoulo T, Olivi E, Clerc M (2011) Forward field computation with OpenMEEG. Comput Intell Neurosci 923:703Google Scholar
  12. Guggisberg AG, Honma SM, Findlay AM, Dalal SS, Kirsch HE, Berger MS, Nagarajan SS (2008) Mapping functional connectivity in patients with brain lesions. Ann Neurol 63(2):193–203. doi: 10.1002/ana.21224 CrossRefGoogle Scholar
  13. Guggisberg AG, Dalal SS, Zumer JM, Wong DD, Dubovik S, Michel CM, Schnider A (2011) Localization of cortico-peripheral coherence with electroencephalography. NeuroImage 57(4):1348–1357CrossRefGoogle Scholar
  14. Nagarajan SS, Attias HT, Hild KE, Sekihara K (2007) A probabilistic algorithm for robust interference suppression in bioelectromagnetic sensor data. Stat Med 26(21):3886–3910CrossRefMathSciNetGoogle Scholar
  15. Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M (2004) Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol 115(10):2292–2307CrossRefGoogle Scholar
  16. Oostenveld R, Fries P, Maris E, Schoffelen JM (2011) Field trip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 156:869Google Scholar
  17. Owen JP, Sekihara K, Nagarajan SS (2012a) Non-parametric statistical thresholding for sparse magnetoencephalography source reconstructions. Front Neurosci 6:186Google Scholar
  18. Owen JP, Wipf DP, Attias HT, Sekihara K, Nagarajan SS (2012b) Performance evaluation of the Champagne source reconstruction algorithm on simulated and real M/EEG data. NeuroImage 60(1):305–323Google Scholar
  19. Pascual-Marqui RD, Lehmann D, Koukkou M, Kochi K, Anderer P, Saletu B, Tanaka H, Hirata K, John ER, Prichep L, Biscay-Lirio R, Kinoshita T (2011) Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philos Transact A Math Phys Eng Sci 369(1952):3768–3784CrossRefMATHGoogle Scholar
  20. Singh KD, Barnes GR, Hillebrand A (2003) Group imaging of task-related changes in cortical synchronisation using nonparametric permutation testing. NeuroImage 19(4):1589–1601CrossRefGoogle Scholar
  21. Spinelli L, Andino SG, Lantz G, Seeck M, Michel CM (2000) Electromagnetic inverse solutions in anatomically constrained spherical head models. Brain Topogr 13(2):115–125CrossRefGoogle Scholar
  22. Stam CJ, Nolte G, Daffertshofer A (2007) Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp 28(11):1178–1193CrossRefGoogle Scholar
  23. Stenroos M, Mäntynen V, Nenonen J (2007) A Matlab library for solving quasi-static volume conduction problems using the boundary element method. Comput Methods Programs Biomed 88(3):256–263CrossRefGoogle Scholar
  24. Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM (2011) Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci 879:716Google Scholar
  25. Zumer JM, Attias HT, Sekihara K, Nagarajan SS (2007) A probabilistic algorithm integrating source localization and noise suppression for MEG and EEG data. NeuroImage 37:102–115CrossRefGoogle Scholar
  26. Zumer JM, Attias HT, Sekihara K, Nagarajan SS (2008) Probabilistic algorithms for MEG/EEG source reconstruction using temporal basis functions learned from data. NeuroImage 41:924–940CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Johanna M. Zumer
    • 1
  • Daniel D. E. Wong
    • 2
  • Adrian G. Guggisberg
    • 3
  • Srikantan S. Nagarajan
    • 4
  • Sarang S. Dalal
    • 2
    • 5
  1. 1.Radboud University NijmegenDonders Institute for Brain Cognition and Behaviour, Centre for Cognitive NeuroimagingNijmegenThe Netherlands
  2. 2.Department of PsychologyUniversity of KonstanzKonstanzGermany
  3. 3.Division of Neurorehabilitation, Department of Clinical NeurosciencesUniversity Hospital GenevaGenevaSwitzerland
  4. 4.Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoUSA
  5. 5.ZukunftskollegUniversity of KonstanzKonstanzGermany

Personalised recommendations