Advertisement

Merging Partitions Using Similarities of Anchor Subsets

  • Thomas A. Runkler
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 190)

Abstract

This paper addresses the problem of merging pairs of partition matrices. Such partition matrices may be produced by collaborative clustering. We assume that each subset in one partition matrix matches one of the subsets in the other partition matrix. To align the arbitrarily ordered rows in the partition matrices we use the memberships of a set of anchor points and maximize their pairwise similarities. Here, we consider various set-theoretic similarity measures. Experiments with a simplified version of the well-known BIRCH benchmark data set illustrate the effectivity of the approach and show that all considered similarity measures are well suited for partition merging.

Keywords

Fuzzy clustering similarity measures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, D.T., Bezdek, J.C., Popescu, M., Keller, J.M.: Comparing fuzzy, probabilistic, and possibilistic partitions. IEEE Trans. Fuzzy Syst. 18(5), 906–918 (2010)CrossRefGoogle Scholar
  2. 2.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)MATHCrossRefGoogle Scholar
  3. 3.
    Dubois, D., Prade, H.: Fuzzy Sets and Systems. Academic Press, London (1980)MATHGoogle Scholar
  4. 4.
    Enta, Y.: Fuzzy decision theory. In: Int. Congress on Applied Systems Research and Cybernetics, Acapulco, Mexico, pp. 2980–2990 (1980)Google Scholar
  5. 5.
    Geva, A.B.: Hierarchical unsupervised fuzzy clustering. IEEE Trans. Fuzzy Syst. 7(6), 723–733 (1999)CrossRefGoogle Scholar
  6. 6.
    Gregson, R.M.: Psychometrics of Similarity. Academic Press, New York (1975)Google Scholar
  7. 7.
    Hore, P., Hall, L.O.: Scalable clustering: a distributed approach. In: IEEE Int. Conf. on Fuzzy Syst., Budapest, Hungary, vol. 1, pp. 143–148 (2004)Google Scholar
  8. 8.
    Hüllermeier, E., Rifqi, M.: A fuzzy variant of the Rand index for comparing clustering structures. In: Joint IFSA World Congress and EUSFLAT Conference, Lisbon, Portugal, pp. 1294–1298 (2009)Google Scholar
  9. 9.
    Hüllermeier, E., Rifqi, M., Henzgen, S., Senge, R.: Comparing fuzzy partitions: A generalization of the Rand index and related measures. IEEE Trans. Fuzzy Syst. 20(3), 546–556 (2012)CrossRefGoogle Scholar
  10. 10.
    Jaccard, P.: Étude comparative de la distribution florale dans une portion des alpes et des jura. Bulletin de la Société Vaudoise des Sciences Naturelles 37, 547–579 (1901)Google Scholar
  11. 11.
    Kaymak, U., Babuška, R.: Compatible cluster merging for fuzzy modelling. In: IEEE Int. Conf. on Fuzzy Syst., Yokohama, pp. 897–904 (1995)Google Scholar
  12. 12.
    Krishnapuram, R., Freg, C.P.: Fitting an unknown number of lines and planes to image data through compatible cluster merging. Pattern Recogn. 25(4), 385–400 (1992)CrossRefGoogle Scholar
  13. 13.
    Pedrycz, W.: Collaborative fuzzy clustering. Pattern Recogn. Lett. 23, 1675–1686 (2002)MATHCrossRefGoogle Scholar
  14. 14.
    Pedrycz, W.: Collaborative and knowledge-based fuzzy clustering. Int. J. Innov. Comput. I 3(1), 1–12 (2007)Google Scholar
  15. 15.
    Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971)CrossRefGoogle Scholar
  16. 16.
    Restle, F.: A metric and an ordering on sets. Psychometrica 24, 207–220 (1959)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Runkler, T.A.: Comparing Partitions by Subset Similarities. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS, vol. 6178, pp. 29–38. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Runkler, T.A., Bezdek, J.C., Hall, L.O.: Clustering very large data sets: The complexity of the fuzzy c-means algorithm. In: European Symposium on Intelligent Technologies, Hybrid Systems and Their Implementation on Smart Adaptive Systems (eunite), Albufeira, pp. 420–425 (2002)Google Scholar
  19. 19.
    Schweizer, B., Sklar, A.: Associative functions and statistical triangle inequalities. Publ. Math–Debrecen. 8, 169–186 (1961)MathSciNetMATHGoogle Scholar
  20. 20.
    Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: An efficient data clustering method for very large databases. In: ACM SIGMOD Int. Conf. on Management of Data, pp. 103–114 (1996)Google Scholar
  21. 21.
    Zwick, R., Carlstein, E., Budescu, D.V.: Measures of similarity among fuzzy concepts: A comparative analysis. Int. J. Approx. Reason. 1, 221–242 (1987)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Siemens Corporate TechnologyMünchenGermany

Personalised recommendations