Analysis of Dynamic Brain Networks Using VAR Models

  • Christian Moewes
  • Rudolf Kruse
  • Bernhard A. Sabel
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 190)

Abstract

In neuroscience it became popular to represent neuroimaging data from the human brain as networks. The edges of these (weighted) graphs represent a spatio-temporal similarity between paired data channels. The temporal series of graphs is commonly averaged to a weighted graph of which edge weights are eventually thresholded. Graph measures are then applied to this network to correlate them, e.g. with clinical variables. This approach has some major drawbacks we will discuss in this paper. We identify three limitations of static graphs: selecting a similarity measure, averaging over time, choosing an (arbitrary) threshold value. The latter two procedures should not be performed due to the loss of brain activity dynamics. We propose to work on series of weighted graphs to obtain time series of graph measures. We use vector autoregressive (VAR) models to facilitate a statistical analysis of the resulting time series. Machine learning techniques are used to find dependencies between VAR parameters and clinical variables. We conclude with a discussion and possible ideas for future work.

Keywords

Dynamic networks elctroencephalography neuroimaging regression vector autoregressive model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bunke, H.: On a relation between graph edit distance and maximum common subgraph. Pattern Recognit. Lett. 18(8), 689–694 (1997)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Butts, C.T.: Revisiting the foundations of network analysis. Science 325(5939), 414–416 (2009)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Csárdi, G., Nepusz, T.: The igraph software package for complex network research. InterJournal Complex Systems 1695 (2006)Google Scholar
  4. 4.
    Daniel, P.M., Whitteridge, D.: The representation of the visual field on the cerebral cortex in monkeys. J. Physiol. 159(2), 203–221 (1961)Google Scholar
  5. 5.
    Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004)CrossRefGoogle Scholar
  6. 6.
    Edwards, E.: Electrocortical activation and human brain mapping. PhD thesis, University of California, Berkeley, CA, USA (2007)Google Scholar
  7. 7.
    Held, P., Moewes, C., Braune, C., Kruse, R., Sabel, B.A.: Advanced Analysis of Dynamic Graphs in Social and Neural Networks. In: Borgelt, C., Gil, M.Á., Sousa, J.M.C., Verleysen, M. (eds.) Towards Advanced Data Analysis. STUDFUZZ, vol. 285, pp. 205–222. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Lütkepohl, H.: New Introduction to Multiple Time Series Analysis. In: Econometrics / Statistics. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Makeig, S., Bell, A.J., Jung, T., Sejnowski, T.J.: Independent component analysis of electroencephalographic data. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems, vol. 8, pp. 145–151. MIT Press, Cambridge (1996)Google Scholar
  10. 10.
    Montez, T., Linkenkaer-Hansen, K., van Dijk, B.W., Stam, C.J.: Synchronization likelihood with explicit time-frequency priors. Neuroimage 33(4), 1117–1125 (2006)CrossRefGoogle Scholar
  11. 11.
    Pearl, J.: Causal inference in statistics: An overview. Stat. Surv. 3, 96–146 (2009)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Pedregosa, F., Varoquaux, G., Gramfort, et al.: Scikit-learn: Machine learning in python. JMLR 12, 2825–2830 (2011)MathSciNetGoogle Scholar
  13. 13.
    Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 52(3), 1059–1069 (2010)CrossRefGoogle Scholar
  14. 14.
    Sabel, B.A., Fedorov, A.B., Naue, N., Borrmann, A., Herrmann, C., Gall, C.: Non-invasive alternating current stimulation improves vision in optic neuropathy. Restor. Neurol. Neurosci. 29(6), 493–505 (2011)Google Scholar
  15. 15.
    Sporns, O.: Networks of the Brain. MIT Press, Cambridge (2010)Google Scholar
  16. 16.
    Stam, C., Jones, B., Nolte, G., Breakspear, M., Scheltens, P.: Small-World networks and functional connectivity in alzheimer’s disease. Cerebral Cortex 17(1), 92–99 (2007)CrossRefGoogle Scholar
  17. 17.
    Stam, C.J., van Dijk, B.W.: Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets. J. Phys. D: Nonlinear Phenom. 163(3-4), 236–251 (2002)MATHCrossRefGoogle Scholar
  18. 18.
    Varela, F., Lachaux, J., Rodriguez, E., Martinerie, J.: The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2(4), 229–239 (2001)CrossRefGoogle Scholar
  19. 19.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar
  20. 20.
    Wendling, F., Ansari-Asl, K., Bartolomei, F., Senhadji, L.: From EEG signals to brain connectivity: A model-based evaluation of interdependence measures. J. Neurosci. Methods 183(1), 9–18 (2009)CrossRefGoogle Scholar
  21. 21.
    Wüst, S., Kasten, E., Sabel, B.A.: Blindsight after optic nerve injury indicates functionality of spared fibers. J. Cogn. Neurosci. 14(2), 243–253 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christian Moewes
    • 1
  • Rudolf Kruse
    • 1
  • Bernhard A. Sabel
    • 2
  1. 1.Faculty of Computer ScienceUniversity of MagdeburgMagdeburgGermany
  2. 2.Medical FacultyUniversity of MagdeburgMagdeburgGermany

Personalised recommendations