Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 863))

Abstract

I review two cosmological paradigms which are alternative to the current inflationary scenario. The first alternative is the “matter bounce”, a non-singular bouncing cosmology with a matter-dominated phase of contraction. The second is an “emergent” scenario, which can be implemented in the context of “string gas cosmology”. I will compare these scenarios with the inflationary one and demonstrate that all three lead to an approximately scale-invariant spectrum of cosmological perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This corresponds to the time reverse of entering a region of large-field inflation.

  2. 2.

    The gravitational wave tensor h ij can be written as the amplitude h multiplied by a constant polarization tensor.

  3. 3.

    We emphasize that it was important for us to have compact spatial dimensions in order to obtain the winding modes which are crucial to get the holographic scaling of the thermodynamic quantities.

References

  1. A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347 (1981)

    ADS  Google Scholar 

  2. R. Brout, F. Englert, E. Gunzig, The creation of the universe as a quantum phenomenon. Ann. Phys. 115, 78 (1978)

    Article  ADS  Google Scholar 

  3. A.A. Starobinsky, A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99 (1980)

    Article  ADS  Google Scholar 

  4. K. Sato, First order phase transition of a vacuum and expansion of the universe. Mon. Not. R. Astron. Soc. 195, 467 (1981)

    Article  ADS  Google Scholar 

  5. V. Mukhanov, G. Chibisov, Quantum fluctuation and nonsingular universe. JETP Lett. 33, 532 (1981) (In Russian) [Pisma Zh. Eksp. Teor. Fiz. 33, 549 (1981)]

    ADS  Google Scholar 

  6. W. Press, Spontaneous production of the Zel’dovich spectrum of cosmological fluctuations. Phys. Scr. 21, 702 (1980)

    Article  ADS  Google Scholar 

  7. A.A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the universe. JETP Lett. 30, 682 (1979) [Pisma Zh. Eksp. Teor. Fiz. 30 719 (1979)]

    ADS  Google Scholar 

  8. Y.B. Zeldovich, A hypothesis, unifying the structure and the entropy of the universe. Mon. Not. R. Astron. Soc. 160, 1P (1972)

    Article  ADS  Google Scholar 

  9. E.R. Harrison, Fluctuations at the threshold of classical cosmology. Phys. Rev. D 1, 2726 (1970)

    ADS  Google Scholar 

  10. R.A. Sunyaev, Y.B. Zeldovich, Small scale fluctuations of relic radiation. Astrophys. Space Sci. 7, 3–19 (1970)

    ADS  Google Scholar 

  11. P.J.E. Peebles, J.T. Yu, Primeval adiabatic perturbation in an expanding universe. Astrophys. J. 162, 815–836 (1970)

    Article  ADS  Google Scholar 

  12. C.L. Bennett et al., First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: preliminary maps and basic results. Astrophys. J. Suppl. 148, 1 (2003). arXiv:astro-ph/0302207

    Article  ADS  Google Scholar 

  13. R.H. Brandenberger, C. Vafa, Superstrings in the early universe. Nucl. Phys. B 316, 391 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Nayeri, R.H. Brandenberger, C. Vafa, Producing a scale-invariant spectrum of perturbations in a Hagedorn phase of string cosmology. Phys. Rev. Lett. 97, 021302 (2006). arXiv:hep-th/0511140

    Article  ADS  Google Scholar 

  15. R.H. Brandenberger, String gas cosmology, in String Cosmology, ed. by J. Erdmenger (Wiley, New York, 2009). arXiv:0808.0746 [hep-th]

    Google Scholar 

  16. T. Battefeld, S. Watson, String gas cosmology. Rev. Mod. Phys. 78, 435 (2006). arXiv:hep-th/0510022

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. R.H. Brandenberger, String gas cosmology: progress and problems. Class. Quantum Gravity 28, 204005 (2011). arXiv:1105.3247 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. G.F.R. Ellis, R. Maartens, The emergent universe: inflationary cosmology with no singularity. Class. Quantum Gravity 21, 223 (2004). gr-qc/0211082

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. D. Wands, Duality invariance of cosmological perturbation spectra. Phys. Rev. D 60, 023507 (1999). arXiv:gr-qc/9809062

    ADS  Google Scholar 

  20. F. Finelli, R. Brandenberger, On the generation of a scale-invariant spectrum of adiabatic fluctuations in cosmological models with a contracting phase. Phys. Rev. D 65, 103522 (2002). arXiv:hep-th/0112249

    ADS  Google Scholar 

  21. R.H. Brandenberger, Cosmology of the very early universe. AIP Conf. Proc. 1268, 3–70 (2010). arXiv:1003.1745 [hep-th]

    Article  ADS  Google Scholar 

  22. M. Gasperini, G. Veneziano, Pre-big bang in string cosmology. Astropart. Phys. 1, 317 (1993). arXiv:hep-th/9211021

    Article  ADS  Google Scholar 

  23. J. Khoury, B.A. Ovrut, P.J. Steinhardt, N. Turok, The ekpyrotic universe: colliding branes and the origin of the hot big bang. Phys. Rev. D 64, 123522 (2001). arXiv:hep-th/0103239

    ADS  MathSciNet  Google Scholar 

  24. V.A. Rubakov, Harrison-Zeldovich spectrum from conformal invariance. J. Cosmol. Astropart. Phys. 0909, 030 (2009). arXiv:0906.3693 [hep-th]

    Article  ADS  Google Scholar 

  25. K. Hinterbichler, J. Khoury, The pseudo-conformal universe: scale invariance from spontaneous breaking of conformal symmetry. arXiv:1106.1428 [hep-th]

  26. F.L. Bezrukov, M. Shaposhnikov, The standard model Higgs boson as the inflaton. Phys. Lett. B 659, 703 (2008). arXiv:0710.3755 [hep-th]

    Article  ADS  Google Scholar 

  27. F.C. Adams, K. Freese, A.H. Guth, Constraints on the scalar field potential in inflationary models. Phys. Rev. D 43, 965 (1991)

    Article  ADS  Google Scholar 

  28. R.H. Brandenberger, Inflationary cosmology: progress and problems. arXiv:hep-ph/9910410

  29. R.H. Brandenberger, J. Martin, The robustness of inflation to changes in superPlanck scale physics. Mod. Phys. Lett. A 16, 999 (2001). arXiv:astro-ph/0005432

    Article  ADS  MATH  Google Scholar 

  30. J. Martin, R.H. Brandenberger, The transPlanckian problem of inflationary cosmology. Phys. Rev. D 63, 123501 (2001). arXiv:hep-th/0005209

    ADS  Google Scholar 

  31. J.C. Niemeyer, Inflation with a high frequency cutoff. Phys. Rev. D 63, 123502 (2001). arXiv:astro-ph/0005533

    ADS  Google Scholar 

  32. J.C. Niemeyer, R. Parentani, Minimal modifications of the primordial power spectrum from an adiabatic short distance cutoff. Phys. Rev. D 64, 101301 (2001). arXiv:astro-ph/0101451

    ADS  Google Scholar 

  33. S. Shankaranarayanan, Is there an imprint of Planck scale physics on inflationary cosmology? Class. Quantum Gravity 20, 75 (2003). arXiv:gr-qc/0203060

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge, 1973)

    Book  MATH  Google Scholar 

  35. A. Borde, A. Vilenkin, Eternal inflation and the initial singularity. Phys. Rev. Lett. 72, 3305 (1994). arXiv:gr-qc/9312022

    Article  ADS  Google Scholar 

  36. C. Kounnas, H. Partouche, N. Toumbas, Thermal duality and non-singular cosmology in d-dimensional superstrings. Nucl. Phys. B 855, 280 (2012). arXiv:1106.0946 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. C. Kounnas, H. Partouche, N. Toumbas, S-brane to thermal non-singular string cosmology. arXiv:1111.5816 [hep-th]

  38. R. Brandenberger, C. Kounnas, H. Partouche, S. Patil, N. Toumbas, Fluctuations in non-singular bouncing cosmologies from Type II superstrings, to be submitted

    Google Scholar 

  39. M. Novello, S.E.P. Bergliaffa, Bouncing cosmologies. Phys. Rep. 463, 127 (2008). arXiv:0802.1634 [astro-ph]

    Article  ADS  MathSciNet  Google Scholar 

  40. B. Feng, X.L. Wang, X.M. Zhang, Dark energy constraints from the cosmic age and supernova. Phys. Lett. B 607, 35 (2005). arXiv:astro-ph/0404224

    Article  ADS  Google Scholar 

  41. B. Feng, M. Li, Y.S. Piao, X. Zhang, Oscillating quintom and the recurrent universe. Phys. Lett. B 634, 101 (2006). arXiv:astro-ph/0407432

    Article  ADS  Google Scholar 

  42. Y.F. Cai, T. Qiu, Y.S. Piao, M. Li, X. Zhang, Bouncing universe with quintom matter. J. High Energy Phys. 0710, 071 (2007). arXiv:0704.1090 [gr-qc]

    Article  ADS  Google Scholar 

  43. Y.F. Cai, T.T. Qiu, J.Q. Xia, X. Zhang, A model of inflationary cosmology without singularity. Phys. Rev. D 79, 021303 (2009). arXiv:0808.0819 [astro-ph]

    Article  ADS  Google Scholar 

  44. Y.F. Cai, T. Qiu, R. Brandenberger, Y.S. Piao, X. Zhang, On perturbations of quintom bounce. J. Cosmol. Astropart. Phys. 0803, 013 (2008). arXiv:0711.2187 [hep-th]

    Article  ADS  Google Scholar 

  45. Y.F. Cai, X. Zhang, Evolution of metric perturbations in quintom bounce model. J. Cosmol. Astropart. Phys. 0906, 003 (2009). arXiv:0808.2551 [astro-ph]

    Article  ADS  Google Scholar 

  46. J.M. Cline, S. Jeon, G.D. Moore, The phantom menaced: constraints on low-energy effective ghosts. Phys. Rev. D 70, 043543 (2004). arXiv:hep-ph/0311312

    ADS  Google Scholar 

  47. B. Grinstein, D. O’Connell, M.B. Wise, The Lee-Wick standard model. Phys. Rev. D 77, 025012 (2008). arXiv:0704.1845 [hep-ph]

    ADS  Google Scholar 

  48. Y.F. Cai, T. Qiu, R. Brandenberger, X. Zhang, A nonsingular cosmology with a scale-invariant spectrum of cosmological perturbations from Lee-Wick theory. Phys. Rev. D 80, 023511 (2009). arXiv:0810.4677 [hep-th]

    ADS  Google Scholar 

  49. J. Karouby, R. Brandenberger, A radiation bounce from the Lee-Wick construction? Phys. Rev. D 82, 063532 (2010). arXiv:1004.4947 [hep-th]

    ADS  Google Scholar 

  50. J. Karouby, T. Qiu, R. Brandenberger, On the instability of the Lee-Wick bounce. Phys. Rev. D 84, 043505 (2011). arXiv:1104.3193 [hep-th]

    ADS  Google Scholar 

  51. V.A. Belinsky, I.M. Khalatnikov, E.M. Lifshitz, Oscillatory approach to a singular point in the relativistic cosmology. Adv. Phys. 19, 525 (1970)

    Article  ADS  Google Scholar 

  52. C. Lin, R.H. Brandenberger, L.P. Levasseur, A matter bounce by means of Ghost condensation. J. Cosmol. Astropart. Phys. 1104, 019 (2011). arXiv:1007.2654 [hep-th]

    Article  ADS  Google Scholar 

  53. P. Creminelli, L. Senatore, A smooth bouncing cosmology with scale invariant spectrum. J. Cosmol. Astropart. Phys. 0711, 010 (2007). arXiv:hep-th/0702165

    Article  ADS  Google Scholar 

  54. E.I. Buchbinder, J. Khoury, B.A. Ovrut, New ekpyrotic cosmology. Phys. Rev. D 76, 123503 (2007). arXiv:hep-th/0702154

    ADS  MathSciNet  MATH  Google Scholar 

  55. T. Qiu, J. Evslin, Y.F. Cai, M. Li, X. Zhang, Bouncing Galileon cosmologies. J. Cosmol. Astropart. Phys. 1110, 036 (2011). arXiv:1108.0593 [hep-th]

    Article  ADS  Google Scholar 

  56. D.A. Easson, I. Sawicki, A. Vikman, G-bounce. J. Cosmol. Astropart. Phys. 1111, 021 (2011). arXiv:1109.1047 [hep-th]

    Article  ADS  Google Scholar 

  57. J.K. Erickson, D.H. Wesley, P.J. Steinhardt, N. Turok, Kasner and mixmaster behavior in universes with equation of state w≥1. Phys. Rev. D 69, 063514 (2004). arXiv:hep-th/0312009

    ADS  MathSciNet  Google Scholar 

  58. Y. Cai, D. Easson, R. Brandenberger, Towards a nonsingular bouncing cosmology. J. Cosmol. Astropart. Phys. 1208, 020 (2012). arXiv:1206.2382

    Article  ADS  Google Scholar 

  59. R.H. Brandenberger, V.F. Mukhanov, A. Sornborger, A cosmological theory without singularities. Phys. Rev. D 48, 1629 (1993). arXiv:gr-qc/9303001

    ADS  MathSciNet  Google Scholar 

  60. T. Biswas, A. Mazumdar, W. Siegel, Bouncing universes in string-inspired gravity. J. Cosmol. Astropart. Phys. 0603, 009 (2006). arXiv:hep-th/0508194

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. A. Kehagias, E. Kiritsis, Mirage cosmology. J. High Energy Phys. 9911, 022 (1999). arXiv:hep-th/9910174

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. R. Brandenberger, H. Firouzjahi, O. Saremi, Cosmological perturbations on a bouncing brane. J. Cosmol. Astropart. Phys. 0711, 028 (2007). arXiv:0707.4181 [hep-th]

    Article  ADS  Google Scholar 

  63. P. Horava, Quantum gravity at a Lifshitz point. Phys. Rev. D 79, 084008 (2009). arXiv:0901.3775 [hep-th]

    ADS  MathSciNet  Google Scholar 

  64. R. Brandenberger, Matter bounce in Horava-Lifshitz cosmology. Phys. Rev. D 80, 043516 (2009). arXiv:0904.2835 [hep-th]

    ADS  MathSciNet  Google Scholar 

  65. M. Bojowald, Quantum cosmology. Lect. Notes Phys. 835, 1 (2011)

    Article  MATH  Google Scholar 

  66. A. Ashtekar, P. Singh, Loop quantum cosmology: a status report. Class. Quantum Gravity 28, 213001 (2011). arXiv:1108.0893 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. P. Creminelli, A. Nicolis, E. Trincherini, Galilean genesis: an alternative to inflation. J. Cosmol. Astropart. Phys. 1011, 021 (2010). arXiv:1007.0027 [hep-th]

    Article  ADS  Google Scholar 

  68. L. Levasseur Perreault, R. Brandenberger, A.-C. Davis, Defrosting in an emergent Galileon cosmology. Phys. Rev. D 84, 103512 (2011). arXiv:1105.5649 [astro-ph.CO]

    ADS  Google Scholar 

  69. J. Kripfganz, H. Perlt, Cosmological impact of winding strings. Class. Quantum Gravity 5, 453 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  70. R. Hagedorn, Statistical thermodynamics of strong interactions at high-energies. Nuovo Cimento Suppl. 3, 147 (1965)

    Google Scholar 

  71. J. Polchinski, String Theory, vols. 1 and 2 (Cambridge Univ. Press, Cambridge, 1998)

    Book  MATH  Google Scholar 

  72. T. Boehm, R. Brandenberger, On T-duality in brane gas cosmology. J. Cosmol. Astropart. Phys. 0306, 008 (2003). arXiv:hep-th/0208188

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. K. Hotta, K. Kikkawa, H. Kunitomo, Correlation between momentum modes and winding modes in Brandenberger-Vafa’s string cosmological model. Prog. Theor. Phys. 98, 687 (1997). arXiv:hep-th/9705099

    Article  ADS  MathSciNet  Google Scholar 

  74. M.A.R. Osorio, M.A. Vazquez-Mozo, A cosmological interpretation of duality. Phys. Lett. B 320, 259 (1994). arXiv:hep-th/9311080

    Article  ADS  Google Scholar 

  75. A.A. Tseytlin, C. Vafa, Elements of string cosmology. Nucl. Phys. B 372, 443 (1992). arXiv:hep-th/9109048

    Article  ADS  MathSciNet  Google Scholar 

  76. G. Veneziano, Scale factor duality for classical and quantum strings. Phys. Lett. B 265, 287 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  77. A.A. Tseytlin, Dilaton, winding modes and cosmological solutions. Class. Quantum Gravity 9, 979 (1992). arXiv:hep-th/9112004

    Article  ADS  MathSciNet  Google Scholar 

  78. R.H. Brandenberger, A.R. Frey, S. Kanno, Towards a nonsingular tachyonic big crunch. Phys. Rev. D 76, 063502 (2007). arXiv:0705.3265 [hep-th]

    ADS  MathSciNet  Google Scholar 

  79. S. Arapoglu, A. Karakci, A. Kaya, S-duality in string gas cosmology. Phys. Lett. B 645, 255 (2007). arXiv:hep-th/0611193

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. M. Sakellariadou, Numerical experiments in string cosmology. Nucl. Phys. B 468, 319 (1996). arXiv:hep-th/9511075

    Article  ADS  Google Scholar 

  81. G.B. Cleaver, P.J. Rosenthal, String cosmology and the dimension of space-time. Nucl. Phys. B 457, 621 (1995). arXiv:hep-th/9402088

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. R. Brandenberger, D.A. Easson, D. Kimberly, Loitering phase in brane gas cosmology. Nucl. Phys. B 623, 421 (2002). arXiv:hep-th/0109165

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. A. Vilenkin, E.P.S. Shellard, Cosmic Strings and Other Topological Defects (Cambridge Univ. Press, Cambridge, 1994)

    MATH  Google Scholar 

  84. M.B. Hindmarsh, T.W.B. Kibble, Cosmic strings. Rep. Prog. Phys. 58, 477 (1995). arXiv:hep-ph/9411342

    Article  ADS  MathSciNet  Google Scholar 

  85. R.H. Brandenberger, Topological defects and structure formation. Int. J. Mod. Phys. A 9, 2117 (1994). arXiv:astro-ph/9310041

    Article  ADS  Google Scholar 

  86. R. Easther, B.R. Greene, M.G. Jackson, D. Kabat, String windings in the early universe. J. Cosmol. Astropart. Phys. 0502, 009 (2005). arXiv:hep-th/0409121

    ADS  MathSciNet  Google Scholar 

  87. R. Danos, A.R. Frey, A. Mazumdar, Interaction rates in string gas cosmology. Phys. Rev. D 70, 106010 (2004). arXiv:hep-th/0409162

    ADS  Google Scholar 

  88. B. Greene, D. Kabat, S. Marnerides, Dynamical decompactification and three large dimensions. Phys. Rev. D 82, 043528 (2010). arXiv:0908.0955 [hep-th]

    ADS  Google Scholar 

  89. R.H. Brandenberger, Moduli stabilization in string gas cosmology. Prog. Theor. Phys. Suppl. 163, 358 (2006). arXiv:hep-th/0509159

    Article  ADS  MathSciNet  MATH  Google Scholar 

  90. S. Watson, R. Brandenberger, Stabilization of extra dimensions at tree level. J. Cosmol. Astropart. Phys. 0311, 008 (2003). arXiv:hep-th/0307044

    Article  ADS  Google Scholar 

  91. L. Kofman, A. Linde, X. Liu, A. Maloney, L. McAllister, E. Silverstein, Beauty is attractive: moduli trapping at enhanced symmetry points. J. High Energy Phys. 0405, 030 (2004). arXiv:hep-th/0403001

    Article  ADS  MathSciNet  Google Scholar 

  92. S. Watson, Moduli stabilization with the string Higgs effect. Phys. Rev. D 70, 066005 (2004). arXiv:hep-th/0404177

    ADS  Google Scholar 

  93. S.P. Patil, R. Brandenberger, Radion stabilization by stringy effects in general relativity and dilaton gravity. Phys. Rev. D 71, 103522 (2005). arXiv:hep-th/0401037

    ADS  Google Scholar 

  94. S.P. Patil, R.H. Brandenberger, The cosmology of massless string modes. J. Cosmol. Astropart. Phys. 0601, 005 (2006). arXiv:hep-th/0502069

    Article  ADS  Google Scholar 

  95. R. Brandenberger, Y.K. Cheung, S. Watson, Moduli stabilization with string gases and fluxes. J. High Energy Phys. 0605, 025 (2006). arXiv:hep-th/0501032

    MathSciNet  Google Scholar 

  96. R.J. Danos, A.R. Frey, R.H. Brandenberger, Stabilizing moduli with thermal matter and nonperturbative effects. Phys. Rev. D 77, 126009 (2008). arXiv:0802.1557 [hep-th]

    ADS  Google Scholar 

  97. C.P. Burgess, L. McAllister, Challenges for string cosmology. Class. Quantum Gravity 28, 204002 (2011). arXiv:1108.2660 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  98. S. Mishra, W. Xue, R. Brandenberger, U. Yajnik, Supersymmetry breaking and dilaton stabilization in string gas cosmology. arXiv:1103.1389 [hep-th]

  99. S. Watson, R.H. Brandenberger, Isotropization in brane gas cosmology. Phys. Rev. D 67, 043510 (2003). arXiv:hep-th/0207168

    ADS  MathSciNet  Google Scholar 

  100. V.F. Mukhanov, H.A. Feldman, R.H. Brandenberger, Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions. Phys. Rep. 215, 203 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  101. R.H. Brandenberger, Lectures on the theory of cosmological perturbations. Lect. Notes Phys. 646, 127 (2004). arXiv:hep-th/0306071

    Article  ADS  MATH  Google Scholar 

  102. V.F. Mukhanov, Quantum theory of gauge invariant cosmological perturbations. Sov. Phys. JETP 67(7), 1297 (1988) [Zh. Eksp. Teor. Fiz. 94, 1 (1988)]

    MathSciNet  Google Scholar 

  103. V.F. Mukhanov, Gravitational instability of the universe filled with a scalar field. JETP Lett. 41, 493 (1985) [Pisma Zh. Eksp. Teor. Fiz. 41, 402 (1985)]

    ADS  Google Scholar 

  104. M. Sasaki, Large scale quantum fluctuations in the inflationary universe. Prog. Theor. Phys. 76, 1036 (1986)

    Article  ADS  Google Scholar 

  105. V.N. Lukash, Production of phonons in an isotropic universe. Sov. Phys. JETP 52, 807 (1980) [Zh. Eksp. Teor. Fiz. 79]

    ADS  MathSciNet  Google Scholar 

  106. J.M. Bardeen, P.J. Steinhardt, M.S. Turner, Spontaneous creation of almost scale—free density perturbations in an inflationary universe. Phys. Rev. D 28, 679 (1983)

    Article  ADS  Google Scholar 

  107. R.H. Brandenberger, R. Kahn, Cosmological perturbations in inflationary universe models. Phys. Rev. D 29, 2172 (1984)

    ADS  Google Scholar 

  108. D.H. Lyth, Large scale energy density perturbations and inflation. Phys. Rev. D 31, 1792 (1985)

    ADS  MathSciNet  Google Scholar 

  109. N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982), 340p

    Book  MATH  Google Scholar 

  110. C. Kiefer, I. Lohmar, D. Polarski, A.A. Starobinsky, Pointer states for primordial fluctuations in inflationary cosmology. Class. Quantum Gravity 24, 1699 (2007). arXiv:astro-ph/0610700

    Article  ADS  MathSciNet  MATH  Google Scholar 

  111. P. Martineau, On the decoherence of primordial fluctuations during inflation. Class. Quantum Gravity 24, 5817 (2007). arXiv:astro-ph/0601134

    Article  ADS  MathSciNet  MATH  Google Scholar 

  112. S. Alexander, T. Biswas, R.H. Brandenberger, On the transfer of adiabatic fluctuations through a nonsingular cosmological bounce. arXiv:0707.4679 [hep-th]

  113. X. Gao, Y. Wang, W. Xue, R. Brandenberger, Fluctuations in a Hořava-Lifshitz bouncing cosmology. J. Cosmol. Astropart. Phys. 1002, 020 (2010). arXiv:0911.3196 [hep-th]

    Article  ADS  Google Scholar 

  114. X. Gao, Y. Wang, R. Brandenberger, A. Riotto, Cosmological perturbations in Hořava-Lifshitz gravity. Phys. Rev. D 81, 083508 (2010). arXiv:0905.3821 [hep-th]

    ADS  Google Scholar 

  115. Y.F. Cai, W. Xue, R. Brandenberger, X.m. Zhang, Thermal fluctuations and bouncing cosmologies. J. Cosmol. Astropart. Phys. 0906, 037 (2009). arXiv:0903.4938 [hep-th]

    Article  ADS  Google Scholar 

  116. J.C. Hwang, E.T. Vishniac, Gauge-invariant joining conditions for cosmological perturbations. Astrophys. J. 382, 363 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  117. N. Deruelle, V.F. Mukhanov, On matching conditions for cosmological perturbations. Phys. Rev. D 52, 5549 (1995). arXiv:gr-qc/9503050

    ADS  Google Scholar 

  118. R. Durrer, F. Vernizzi, Adiabatic perturbations in pre big bang models: matching conditions and scale invariance. Phys. Rev. D 66, 083503 (2002). arXiv:hep-ph/0203275

    ADS  Google Scholar 

  119. D.H. Lyth, The failure of cosmological perturbation theory in the new ekpyrotic scenario. Phys. Lett. B 526, 173 (2002). hep-ph/0110007

    Article  ADS  MATH  Google Scholar 

  120. D.H. Lyth, The primordial curvature perturbation in the ekpyrotic universe. Phys. Lett. B 524, 1 (2002). hep-ph/0106153

    Article  ADS  MATH  Google Scholar 

  121. R. Brandenberger, F. Finelli, On the spectrum of fluctuations in an effective field theory of the ekpyrotic universe. J. High Energy Phys. 0111, 056 (2001). hep-th/0109004

    Article  ADS  MathSciNet  Google Scholar 

  122. J. Khoury, B.A. Ovrut, P.J. Steinhardt, N. Turok, Density perturbations in the ekpyrotic scenario. Phys. Rev. D 66, 046005 (2002). hep-th/0109050

    ADS  MathSciNet  Google Scholar 

  123. R.H. Brandenberger, Processing of cosmological perturbations in a cyclic cosmology. Phys. Rev. D 80, 023535 (2009). arXiv:0905.1514 [hep-th]

    ADS  MathSciNet  Google Scholar 

  124. P.J. Steinhardt, N. Turok, Cosmic evolution in a cyclic universe. Phys. Rev. D 65, 126003 (2002). hep-th/0111098

    ADS  MathSciNet  Google Scholar 

  125. Y. Cai, R. Brandenberger, X. Zhang, The matter bounce curvaton scenario. J. Cosmol. Astropart. Phys. 1103, 003 (2011). arXiv:1101.0822 [hep-th]

    Article  ADS  Google Scholar 

  126. A. Cerioni, R.H. Brandenberger, Cosmological perturbations in the projectable version of Horava-Lifshitz gravity. J. Cosmol. Astropart. Phys. 1108, 015 (2011). arXiv:1007.1006 [hep-th]

    Article  ADS  Google Scholar 

  127. A. Cerioni, R.H. Brandenberger, Cosmological perturbations in the “healthy extension” of Horava-Lifshitz gravity. arXiv:1008.3589 [hep-th]

  128. Y.F. Cai, W. Xue, R. Brandenberger, X. Zhang, Non-Gaussianity in a matter bounce. J. Cosmol. Astropart. Phys. 0905, 011 (2009). arXiv:0903.0631 [astro-ph.CO]

    Article  ADS  Google Scholar 

  129. X. Chen, Primordial non-Gaussianities from inflation models. Adv. Astron. 2010, 638979 (2010). arXiv:1002.1416 [astro-ph.CO]

    Article  Google Scholar 

  130. J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models. J. High Energy Phys. 0305, 013 (2003). arXiv:astro-ph/0210603

    Article  ADS  MathSciNet  Google Scholar 

  131. H. Li, J.Q. Xia, R. Brandenberger, X. Zhang, Constraints on models with a break in the primordial power spectrum. Phys. Lett. B 690, 451 (2010). arXiv:0903.3725 [astro-ph.CO]

    Article  ADS  Google Scholar 

  132. R.H. Brandenberger, A. Nayeri, S.P. Patil, C. Vafa, String gas cosmology and structure formation. Int. J. Mod. Phys. A 22, 3621 (2007). arXiv:hep-th/0608121

    Article  ADS  MathSciNet  MATH  Google Scholar 

  133. R.H. Brandenberger, A. Nayeri, S.P. Patil, C. Vafa, Tensor modes from a primordial Hagedorn phase of string cosmology. Phys. Rev. Lett. 98, 231302 (2007). arXiv:hep-th/0604126

    Article  ADS  Google Scholar 

  134. R.H. Brandenberger et al., More on the spectrum of perturbations in string gas cosmology. J. Cosmol. Astropart. Phys. 0611, 009 (2006). arXiv:hep-th/0608186

    Article  ADS  MathSciNet  Google Scholar 

  135. N. Kaloper, L. Kofman, A. Linde, V. Mukhanov, On the new string theory inspired mechanism of generation of cosmological perturbations. J. Cosmol. Astropart. Phys. 0610, 006 (2006). arXiv:hep-th/0608200

    Article  ADS  Google Scholar 

  136. N. Deo, S. Jain, O. Narayan, C.I. Tan, The effect of topology on the thermodynamic limit for a string gas. Phys. Rev. D 45, 3641 (1992)

    ADS  MathSciNet  Google Scholar 

  137. A. Nayeri, Inflation free, stringy generation of scale-invariant cosmological fluctuations in D=3+1 dimensions. arXiv:hep-th/0607073

  138. L.P. Grishchuk, Amplification of gravitational waves in an isotropic universe. Sov. Phys. JETP 40, 409 (1975) [Zh. Eksp. Teor. Fiz. 67, 825 (1974)]

    ADS  Google Scholar 

  139. B. Chen, Y. Wang, W. Xue, R. Brandenberger, String gas cosmology and non-Gaussianities. arXiv:0712.2477 [hep-th]

  140. E. Witten, Cosmic superstrings. Phys. Lett. B 153, 243 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  141. E.J. Copeland, R.C. Myers, J. Polchinski, Cosmic F and D strings. J. High Energy Phys. 0406, 013 (2004). hep-th/0312067

    Article  ADS  MathSciNet  Google Scholar 

  142. N. Kaiser, A. Stebbins, Microwave anisotropy due to cosmic strings. Nature 310, 391 (1984)

    Article  ADS  Google Scholar 

  143. S. Amsel, J. Berger, R.H. Brandenberger, Detecting cosmic strings in the CMB with the Canny algorithm. J. Cosmol. Astropart. Phys. 0804, 015 (2008). arXiv:0709.0982 [astro-ph]

    Article  ADS  Google Scholar 

  144. A. Stewart, R. Brandenberger, Edge detection, cosmic strings and the south pole telescope. J. Cosmol. Astropart. Phys. 0902, 009 (2009). arXiv:0809.0865 [astro-ph]

    Article  ADS  Google Scholar 

  145. R.J. Danos, R.H. Brandenberger, Canny algorithm, cosmic strings and the cosmic microwave background. Int. J. Mod. Phys. D 19, 183 (2010). arXiv:0811.2004 [astro-ph]

    Article  ADS  MATH  Google Scholar 

  146. R.J. Danos, R.H. Brandenberger, Searching for signatures of cosmic superstrings in the CMB. J. Cosmol. Astropart. Phys. 1002, 033 (2010). arXiv:0910.5722 [astro-ph.CO]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I wish to thank the organizers of this school for inviting me to give these lectures on the beautiful island of Naxos, and for their hospitality. I wish to thank all of my collaborators on whose work I have drawn. This work has been supported in part by funds from an NSERC Discovery Grant and from the Canada Research Chair program. I also acknowledge support from the Killam foundation for the period 9/09–8/11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. Brandenberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brandenberger, R.H. (2013). Unconventional Cosmology. In: Calcagni, G., Papantonopoulos, L., Siopsis, G., Tsamis, N. (eds) Quantum Gravity and Quantum Cosmology. Lecture Notes in Physics, vol 863. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33036-0_12

Download citation

Publish with us

Policies and ethics