Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 191))

  • 1431 Accesses

Abstract

This paper presents a training set decomposition of price-sensitive support vector machines for classification Firstly, decomposition of the training sample set, each subset of training a support vector machine can output a posteriori probability, get through the training of support vector machine on the training sample posterior probability using the learning process and the cost matrix, the true class label of the sample, in order to achieve the reconstruction of the sample, contains a sample misclassification cost information, cost-sensitive support vector machines, making the classification of unbalanced data sets, so that the smallest misclassification cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Han, H., Wang, W.-Y., Mao, B.-H.: Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 878–887. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Tang, S., Chen, S.P.: The generation mechanism of synthetic minority class examples. In: International Conference on Information Technology and Applications in Biomedicine, pp. 444–447 (2008)

    Google Scholar 

  3. Wang, J.J., Xu, M.T., Wang, H., Zhang, J.W.: Classification of imbalanced data by using the SMOTE algorithm and locally linear embedding. In: The 8th International Conference on Signal Processing (2007)

    Google Scholar 

  4. Zhou, Z.H., Liu, X.Y.: Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans. Knowl. Data Eng. 18(1), 63–77 (2006)

    Article  Google Scholar 

  5. Akbani, R., Kwek, S.S., Japkowicz, N.: Applying Support Vector Machines to Imbalanced Datasets. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 39–50. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Weiss, G.M.: Mining with rarity: a unifying framework. ACM SIGKDD Explorations 6(1), 7–19 (2004)

    Article  Google Scholar 

  7. Kubat, M., Matwin, S.: Addressing the curse of imbalanced datasets.One-sided Sampling. In: Proceedings of the Fourteenth International Conference on Machine Learing, pp. 178–186. Tennessee, Nashville (1997)

    Google Scholar 

  8. Weiss, G.M.: Mining with rarity: a unifying framework. ACM SIGKDD Explorations 6(1), 7–19 (2004)

    Article  Google Scholar 

  9. Drown, D.J., Khoshgoftaar, T.M., Narayanan, R.: Using evolutionary sampling to mine imbalanced data. In: The 6th International Conference on Machine Learning and Applications, pp. 363–368. IEEE Computer Society, Washington (2007)

    Google Scholar 

  10. Chawla, N.V., Cieslak, D.A., Hall, L.O., et al.: Automatically Countering Imbalance and Empirical Relationship to Cost. Data Mining and Knowledge Discovery 17(2), 225–252 (2008)

    Article  MathSciNet  Google Scholar 

  11. Garcia, S., Herrera, F.: Evolutionary Under-Sampling for Classification with Imbalanced DataSets: Proposal sand Taxonomy. Evolutionary Computation 17(3), 275–306 (2008)

    Article  Google Scholar 

  12. Han, H., Wang, W.-Y., Mao, B.-H.: Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 878–887. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Hulse, J.V., Khoshgoftaar, T.M., Napolitano, A.: Experimental Perspectives on Learning from Imbalanced Data. In: Proceedings of the 24th International Conference on Machine Learning (ICML 2007), pp. 935–942. ACM, New York (2007)

    Chapter  Google Scholar 

  14. Wu, H., Xu, J.B., Zhang, S.F., Wen, H.: GPU Accelerated Dissipative Particle Dynamics with Parallel Cell-list Updating. IEIT Journal of Adaptive & Dynamic Computing 2011(2), 26–32 (2011) DOI=10.5813/www.ieit-web.org/IJADC/2011.2.4

    Article  Google Scholar 

  15. Zhou, J.J.: The Parallelization Design of Reservoir Numerical Simulator. IEIT Journal of Adaptive & Dynamic Computing 2011(2), 33–37 (2011), DOI=10.5813/www.ieit-web.org/IJADC/2011.2.5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guilin, X. (2013). Price Sensitive Support Vector Machine Based on Data Set Decomposition. In: Du, Z. (eds) Proceedings of the 2012 International Conference of Modern Computer Science and Applications. Advances in Intelligent Systems and Computing, vol 191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33030-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33030-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33029-2

  • Online ISBN: 978-3-642-33030-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics