Advertisement

Design and Implementation of an Automatic Switching Chaotic System between Two Subsystems

  • Yao Sigai
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 191)

Abstract

In order to generate complex attractor of chaos, an automatic switching system which is consists of two subsystems is constructed. Through the analog switch, the system can automatically switch between the three subsystems. With Lyapunov index and the bifurcation diagram analysis of the characteristics of the chaotic system. Analysis of the basic characteristics of the system, such as the equilibrium point, the fractal dimension, dissipation, and so on. Design of analog circuits to implement the switching function and switching chaotic system, through the circuit three chaotic systems automatically switch. Experimental results and computer simulation, Lyapunov exponent analysis and bifurcation diagram analysis are the same.

Keywords

Chaotic system Switch function Analog circuit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lorenz, E.N.: Deterministic nonperiodic flow. Journal of the Atmosphere Science 141, 130–141 (1963)CrossRefGoogle Scholar
  2. 2.
    Chen, G.R., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc Chaos 9, 1465–1466 (1999)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Lü, J.H., Chen, G.R., Cheng, D.Z., et al.: Bridge the gap between the Lorenz system and Chen system. Int. J. Bifur. Chaos 12(2), 2917–2926 (2002)MATHCrossRefGoogle Scholar
  4. 4.
    Cai, G.L., Tan, Z.M., Zhou, W.H., et al.: Dynamical analysis of a new chaotic system and its chaotic control. Acta Physica Sinica 56(11), 6230–6237 (2007)MATHGoogle Scholar
  5. 5.
    Qi, G.Y., Chen, G.R., Du, S.Z., et al.: Analysis of a new chaotic system. Physica A 352(2-4), 295–308 (2005)CrossRefGoogle Scholar
  6. 6.
    Chen, Z.Q., Yang, Y., Yuan, Z.Z.: A single three-wing or four-wing chaotic attractor generated from a three-dimensional smooth quadratic autonomous system. Chaos, Solitons and Fractals 38, 1187–1196 (2008)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Liu, C.X., Liu, T., Liu, L., et al.: A new chaotic attractor. Chaos Solitons & Fractals 22(5), 1031–1038 (2004)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Li, Y.X., Chen, G.R., Tang, W.K.S.: Controlling a unified chaotic system to hyperchaotic. IEEE Trans. CAS 52, 204–207 (2005)Google Scholar
  9. 9.
    Liu, Y.Z., Jiang, C.S.: Building and analysis of properties of a class of correlative and switchable hyperchaotic system. Acta Physica Sinica 58(2), 771–778 (2009)MATHGoogle Scholar
  10. 10.
    Liu, Y.Z., Jiang, C.S., Lin, C.S., et al.: A class of switchable 3D chaotic systems. Acta Physica Sinica 56(6), 3107–3112 (2007)MATHGoogle Scholar
  11. 11.
    Liu, Y.Z., Jiang, C.S., Lin, C.S., et al.: Four-dimensional switchable hyperchaotic system. Acta Physica Sinica 56(9), 5131–5135 (2007)MATHGoogle Scholar
  12. 12.
    Wang, G.Y., He, H.L.: A new Rosslor hyperchaotic system and its realization with systematic circuit parameter design. Chinese Physics B 17(11), 4014–4021 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Wang, G.Y., Bao, X.L., Wang, Z.L.: Design and FPGA Implementation of a new hyperchaotic system. Chinese Physics B 17(10), 3596–3602 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Wuhan PolytechnicWuhanChina

Personalised recommendations