# 3D Hardware Canaries

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7428)

## Abstract

3D integration is a promising advanced manufacturing process offering a variety of new hardware security protection opportunities. This paper presents a way of securing 3D ICs using Hamiltonian paths as hardware integrity verification sensors. As 3D integration consists in the stacking of many metal layers, one can consider surrounding a security-sensitive circuit part by a wire cage.

After exploring and comparing different cage construction strategies (and reporting preliminary implementation results on silicon), we introduce a ”hardware canary”. The canary is a spatially distributed chain of functions F i positioned at the vertices of a 3D cage surrounding a protected circuit. A correct answer (F n  ∘ … ∘ F 1)(m) to a challenge m attests the canary’s integrity.

## Keywords

Metal Layer Hamiltonian Cycle Hamiltonian Path Black Vertex White Vertex
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. [1]
Ababei, C., Feng, Y., Goplen, B., Mogal, H., Zhang, T., Bazargan, K., Sapatnekar, S.: Placement and Routing in 3D Integrated Circuits. IEEE Design and Test of Computers 22(6), 520–531 (2005)
2. [2]
Alexander, A.J., Cohoon, J.P., Colflesh, J.L., Karro, J., Peters, E., Robins, G.: Placement and routing for three-dimensional FPGAs. In: Fourth Canadian Workshop on Field-Programmable Devices, pp. 11–18 (May 1996)Google Scholar
3. [3]
Bollobás, B.: Graph Theory: An Introductory Course, p. 12. Springer, New York (1979)
4. [4]
Dharwadker, A.: The Hamiltonian Circuit Algorithm. Proceedings of the Institute of Mathematics, 32 (2011)Google Scholar
5. [5]
Dickau, R.: Hilbert and Moore 3D Fractal Curves. The Wolfram Demonstrations Project, http://demonstrations.wolfram.com/HilbertAndMoore3DFractalCurves
6. [6]
Goossens, K., van Meerbergen, J., Peeters, A., Wielage, P.: Networks on Silicon: Combinig Best-Effort and Guaranteed Services. In: Proceedings of Design Automation and Test Conference (DATE), pp. 423–425 (2002)Google Scholar
7. [7]
Kim, J., Verbauwhede, I., Chang, M.-C.F.: Design of an Interconnect Architecture and Signaling Technology for Parallelism in Communication. IEEE Trans. VLSI Syst. 15(8), 881–894 (2007)
8. [8]
Moore, E.H.: On Certain Crinkly Curves. Trans. Amer. Math. Soc. 1, 72–90 (1900)
9. [9]
Rijpkema, E., Goossens, K.G.W., Radulescu, A., Dielissen, J., van Meerbergen, J., Wielage, P., Waterlander, E.: Trade offs in the design of a router with both guaranteed and best-effort services for networks on chip. In: Proceedings of Design, Automation and Test Conference in Europe (DATE), pp. 350–355 (March 2003)Google Scholar
10. [10]
Tuyls, P., Schrijen, G.-J., Škorić, B., van Geloven, J., Verhaegh, N., Wolters, R.: Read-Proof Hardware from Protective Coatings. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 369–383. Springer, Heidelberg (2006)
11. [11]
Valamehr, J., Huffmire, T., Irvine, C., Kastner, R., Koç, Ç.K., Levin, T., Sherwood, T.: A Qualitative Security Analysis of a New Class of 3-D Integrated Crypto Co-processors. In: Naccache, D. (ed.) Cryphtography and Security: From Theory to Applications. LNCS, vol. 6805, pp. 364–382. Springer, Heidelberg (2012)
12. [12]
Verbauwhede, I., Chang, M.-C.F.: Reconfigurable interconnect for next generation systems. In: Proceedings of the Fourth IEEE/ACM International Workshop on System-Level Interconnect Prediction (SLIP 2002), April 6-7, pp. 71–74 (2002)Google Scholar

© International Association for Cryptologic Research 2012

## Authors and Affiliations

1. 1.Département d’informatiqueÉcole normale supérieureFrance
2. 2.Altis SemiconductorFrance
3. 3.Sorbonne Universités – Université Paris iiFrance
4. 4.Secure-ICFrance
5. 5.Département Communications et ElectroniqueTélécom-ParisTechFrance