A Statistical Model for DPA with Novel Algorithmic Confusion Analysis

  • Yunsi Fei
  • Qiasi Luo
  • A. Adam Ding
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7428)

Abstract

Side-channel attacks (SCAs) exploit weakness in the physical implementation of cryptographic algorithms, and have emerged as a realistic threat to many critical embedded systems. However, no theoretical model for the widely used differential power analysis (DPA) has revealed exactly what the success rate of DPA depends on and how. This paper proposes a statistical model for DPA that takes characteristics of both the physical implementation and cryptographic algorithm into consideration. Our model establishes a quantitative relation between the success rate of DPA and a cryptographic system. The side-channel characteristic of the physical implementation is modeled as the ratio between the difference-of-means power and the standard deviation of power distribution. The side-channel property of the cryptographic algorithm is extracted by a novel algorithmic confusion analysis. Experimental results on DES and AES verify this model and demonstrate the effectiveness of algorithmic confusion analysis. We expect the model to be extendable to other SCAs, and provide valuable guidelines for truly SCA-resilient system design and implementation.

Keywords

Side-channel attack differential power analysis 

References

  1. 1.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)Google Scholar
  2. 2.
    Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Le, T.-H., Clédière, J., Canovas, C., Robisson, B., Servière, C., Lacoume, J.-L.: A Proposition for Correlation Power Analysis Enhancement. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 174–186. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and Counter-Measures for Smart Cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  8. 8.
    Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to Counteract Power-Analysis Attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)Google Scholar
  9. 9.
    Tiri, K., Verbauwhede, I.: A VLSI design flow for secure side-channel attack resistant ICs. In: Proc. Design, Automation & Test in Europe, pp. 58–63 (2005)Google Scholar
  10. 10.
    Clavier, C., Coron, J.-S., Dabbous, N.: Differential Power Analysis in the Presence of Hardware Countermeasures. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 252–263. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. Stochastic Methods: A Performance Analysis for Side Channel Cryptanalysis. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Standaert, F.-X., Bulens, P., de Meulenaer, G., Veyrat-Charvillon, N.: Improving the rules of the DPA contest. Cryptology ePrint Archive, Report 2008/517 (2008), http://eprint.iacr.org/2008/517
  13. 13.
    Standaert, F.-X., Malkin, T.G., Yung, M.: A Unified Framework for the Analysis of Side-Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Veyrat-Charvillon, N., Standaert, F.-X.: Mutual Information Analysis: How, When and Why? In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 429–443. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Examining smart-card security under the threat of power analysis attacks. IEEE Trans. on Computers 51(5), 541–552 (2002)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Bevan, R., Knudsen, E.: Ways to Enhance Differential Power Analysis. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 327–342. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Mangard, S.: Hardware Countermeasures against DPA – A Statistical Analysis of Their Effectiveness. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 222–235. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Prouff, E.: DPA Attacks and S-Boxes. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 424–441. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Shannon, E.A.: Communication theory of secrecy systems. Bell System Technical Journal 28(4), 656–715 (1949)MathSciNetMATHGoogle Scholar
  20. 20.
    Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman & Hall/CRC Press (2007)Google Scholar
  21. 21.
    Johnson, O.T.: Information Theory and the Central Limit Theorem. Imperial College Press (2004)Google Scholar
  22. 22.
    Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards. Advances in Information Security. Springer-Verlag New York (2007)Google Scholar
  23. 23.
  24. 24.
    Side-channel attack standard evaluation board (SASEBO). Research Center for Information Security (RCIS), http://www.rcis.aist.go.jp/special/SASEBO/index-en.html
  25. 25.
    Coron, J.-S., Kizhvatov, I.: An Efficient Method for Random Delay Generation in Embedded Software. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 156–170. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Coron, J.-S., Kizhvatov, I.: Analysis and Improvement of the Random Delay Countermeasure of CHES 2009. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 95–109. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Mangard, S., Oswald, E., Standaert, F.-X.: One for all - all for one: unifying standard differential power analysis attacks. IET Inf. Security 5(2), 100–110 (2011)CrossRefGoogle Scholar
  28. 28.
    Standaert, F.-X., Peeters, E., Rouvroy, G., Quisquater, J.: An overview of power analysis attacks against field programmable gate arrays. Proc. IEEE 94(2) (2006)Google Scholar

Copyright information

© International Association for Cryptologic Research 2012

Authors and Affiliations

  • Yunsi Fei
    • 1
  • Qiasi Luo
    • 2
  • A. Adam Ding
    • 3
  1. 1.Department of Electrical and Computer EngineeringNortheastern UniversityBostonUSA
  2. 2.Marvell Technology Group Ltd.Santa ClaraUSA
  3. 3.Department of MathematicsNortheastern UniversityBostonUSA

Personalised recommendations