Automatic Creation of Crosswalk for Geospatial Metadata Standard Interoperability

  • Hui Yang
  • Gefei Feng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7478)


Geospatial metadata is very important for describing, managing, querying, retrieving, exchanging and transmitting geospatial data and information resource. As the number, size and complexity of the geospatial metadata standards grow, the task of facilitating greater interoperability between different metadata standards becomes more difficult and important. Crosswalk is the key point to reach interoperability over geospatial metadata standards. Our goal is to provide the automatic creation of crosswalk for heterogeneous geospatial metadata standard interoperability. We introduce a brief but comprehensive overview of the various geospatial metadata standards and describe the related work of geospatial metadata crosswalks. Next, we design a series of formal definitions for geospatial metadata standard mapping. Then, we discuss the multiple attributes similarity of geospatial metadata standard. Next, we introduce the method of automatic creation of crosswalk and mapping based on multiple attribute similarity. Finally we demonstrate our approach and its accuracy using an established crosswalk (CSDGM and ISO 19115).


Geospatial metadata standard interoperability crosswalk multiattribute similarity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yeung, A., Hall, G.: Spatial Database Systems. GeoJournal Library, vol. 87(pt. 2), pp. 129–173. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Yang, H., Sheng, Y.H., Wen, Y.N., Hu, Y.: Distributed Geographic Models Sharing Method Based on Web Services. Geomatics and Information Science of Wuhan University 34(2), 142–145 (2009)Google Scholar
  3. 3.
    FGDC. Content Standard for Digital Geospatial Metadata,
  4. 4.
    ISO. ISO 19115:2003, Geographic information–Metadata,
  5. 5.
    CEN/TC 287, Geographic Information-Data description-Metadata,
  6. 6.
    Liu, R.M., Jiang, J.T.: Implementation of Matadata Standard of Information Sharing for Sustainable Development of China. Research on the China Geographic Information Metadata Standard. Sciences Publishing House (1999)Google Scholar
  7. 7.
    National Geospatial Information Exchanging Center. Standard Draft of Data-sharing Metadata Content of NREDIS (2000),
  8. 8.
    National Geomatics Center of China. Metadata Standard Draft of National Fundamental Geographic Information System (First Draft),
  9. 9.
    Nogueras-Iso, J., Zarazaga-Soria, F.J., Lacasta, J., Bejar, R., Muro-Medrano, P.R.: Metadata standard interoperability: application in the geographic information domain. Computers, Environment and Urban Systems 28(6), 611–634 (2004)CrossRefGoogle Scholar
  10. 10.
    DCMI. Dublin Core Metadata glossary, Final draft,
  11. 11.
    Metadata Architecture and Application Team (MAAT),
  12. 12.
  13. 13.
  14. 14.
    OCLC, Ohio College Library Center,
  15. 15.
    Godby, C.J., Smith, D., Childress, E.: Two Paths to Interoperable Metadata. In: DC 2003: Supporting Communities of Discourse and Practice-Metadata Research & Applications, Seattle, Washington (2003)Google Scholar
  16. 16.
    Tang, J., Li, J., Liang, B., Huang, X., Li, Y., Wang, K.: Using Bayesian Decision for Ontology Mapping. Web Semantics: Science, Services and Agents on the World Wide Web 4(4), 243–262 (2006)CrossRefGoogle Scholar
  17. 17.
    Vossens, P.: EuroWordNet: a multilingual database for information retrieval,
  18. 18.
  19. 19.
    Loukachevitch, N.V.: Russian language in cross-language information retrieval,
  20. 20.
    Princeton University Congnitive Science Laboratory, WordNet,
  21. 21.
    Lin, D.: Using syntactic dependency as local context to resolve word sense ambiguity. In: Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and 8th Conference of the European Chapter of the Association for Computational Linguistics Madrid, Spain, pp. 64–71 (1997)Google Scholar
  22. 22.
    Pantel, P., Lin, D.: Discovering word sence from text. In: Proceedings of the 2002 ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada, pp. 613–619 (2002)Google Scholar
  23. 23.
    Mitchell, T.M.: Machine Learning. McGraw Hill, Columbus (1997)zbMATHGoogle Scholar
  24. 24.
    Saaty, T.L.: The Analytic Hierarchy Process. McGraw Hill, New York (1980)zbMATHGoogle Scholar
  25. 25.
    Caplan, P.: Metadata Fundamentals for All Librarians. American Library Association, Chicago (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hui Yang
    • 1
  • Gefei Feng
    • 2
    • 3
  1. 1.School of Resource and Earth ScienceChina University of Mining and TechnologyXuzhou JiangsuChina
  2. 2.Institute of LinguisticJiangsu Normal UniversityXuzhou JiangsuChina
  3. 3.Key Lab of Linguistic Sciences and Neuro-cognition EngineeringJiangsu CollegeXuzhou JiangsuChina

Personalised recommendations