A Qualitative Bigraph Model for Indoor Space

  • Lisa A. Walton
  • Michael Worboys
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7478)


Formal models of indoor space for reasoning about navigation tasks should capture key static and dynamic properties and relationships between agents and indoor spaces. This paper presents a method for formally representing indoor environments, key indoor events that occur in them, and their effects on the topological properties and relationships between indoor spaces and mobile entities. Based on Milner’s bigraphical models, our indoor bigraphs provide formal algebraic specifications that independently represent agent and place locality (e.g., building hierarchies) and connectivity (e.g., path based navigation graphs). We illustrate how the model supports the description of scenes and narratives with incomplete information, and provide a set of reaction rules dictating legal system transformations to support goal-directed navigation. Given a starting scene and a particular navigation task we can determine potential sequences of events satisfying a goal (e.g., if a building fire occurs, what actions can an agent take to reach an exit?).


Bigraphs Bigraphical Reactive Systems Indoor Bigraphs Indoor Events Indoor Space Indoor Navigation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Howell, I., Batcheler, B.: Building Information Modeling Two Years Later – Huge Potential, Some Success and Several Limitations. The Laiserin Letter (2005)Google Scholar
  2. 2.
    Franz, G., Mallot, H., Wiener, J.: Graph-based Models of Space in Architecture and Cognitive Science - a Comparative Analysis. In: Leong, Y.-T., Lasker, G.E. (eds.) Proceedings of the 17th International Conference on Systems Research, Informatics and Cybernetics, pp. 30–38 (2005)Google Scholar
  3. 3.
    Lee, J., Kwan, M.P.: A Combinatorial Data Model for Representing Topological Relationships between 3-D Geographic Entities. International Journal of Geographical Information Sciences 19(10), 1039–1056 (2005)CrossRefGoogle Scholar
  4. 4.
    Stoffel, E.-P., Lorenz, B., Ohlbach, H.J.: Towards a Semantic Spatial Model for Pedestrian Indoor Navigation. In: Hainaut, J.-L., Rundensteiner, E.A., Kirchberg, M., Bertolotto, M., Brochhausen, M., Chen, Y.-P.P., Cherfi, S.S.-S., Doerr, M., Han, H., Hartmann, S., Parsons, J., Poels, G., Rolland, C., Trujillo, J., Yu, E., Zimányi, E. (eds.) ER Workshops 2007. LNCS, vol. 4802, pp. 328–337. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Richter, K.-F., Winter, S., Rüetschi, U.-J.: Constructing Hierarchical Representations of Indoor Spaces. In: IEEE International Conference on Mobile Data Management, pp. 686–691. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  6. 6.
    Milner, R.: The Space and Motion of Communicating Agents. Cambridge University Press (2009)Google Scholar
  7. 7.
    Walton, L., Worboys, M.: An Algebraic Approach to Image Schemas for Geographic Space. In: Hornsby, K.S., Claramunt, C., Denis, M., Ligozat, G. (eds.) COSIT 2009. LNCS, vol. 5756, pp. 357–370. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Milner, R.: Communicating and mobile systems: the π-calculus. Cambridge University Press, Cambridge (1999)Google Scholar
  9. 9.
    Cardelli, L., Gordon, A.: Mobile Ambients. Theoretical Computer Science, Special Issue on Coordination 240(1), 177–213 (2000)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Cardelli, L.: Abstractions for Mobile Computation. In: Vitek, J., Jensen, C.D. (eds.) Secure Internet Programming. LNCS, vol. 1603, pp. 51–94. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Worboys, M.: Using Bigraphs to model topological graphs embedded in orientable surfaces. Journal of Theoretical Computer Science (2010) (submitted)Google Scholar
  12. 12.
    Walton, L., Worboys, M.: Indoor Spatial Theory. Technical report presented at the ISA project meeting held at the 2010 International Workshop on Indoor Spatial Awareness, Taipei, Taiwan (2010)Google Scholar
  13. 13.
    Gibson, J.: The Theory of Affordances. In: Shaw, R., Bransford, J. (eds.) Perceiving, Acting, and Knowing (1977)Google Scholar
  14. 14.
    Kowalski, R.A., Sergot, M.J.: A Logic-Based Calculus of Events. New Generation Computing 4, 67–95 (1986)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Lisa A. Walton
    • 1
  • Michael Worboys
    • 1
  1. 1.Department of Spatial Information Science and EngineeringUniversity of MaineOronoUSA

Personalised recommendations