Social Welfare to Assess the Global Legibility of a Generalized Map

  • Guillaume Touya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7478)


Cartographic generalization seeks to summarize geographical information from a geo-database to produce a less detailed and readable map. The specifications of a legible map are translated into a set of constraints to guide the generalization process and evaluate it. The global evaluation of the map, or of a part of it, consisting in aggregating all the single constraints satisfactions, is still to tackle for the generalization community. This paper deals with the use of the social welfare theory to handle the aggregation of the single satisfactions on the map level. The social welfare theory deals with the evaluation of the economical global welfare of a society, based on the individual welfare. Different social welfare orderings are adapted to generalization, compared and some are chosen for several generalization use cases. Experiments with topographic maps are carried out to validate the choices.


map generalization evaluation social welfare constraints 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Touya, G., Duchêne, C.: CollaGen: Collaboration between automatic cartographic generalisation processes. In: Ruas, A. (ed.) Advances in Cartography and GIScience, pp. 541–558. Springer, Berlin (2011)CrossRefGoogle Scholar
  2. 2.
    Mackaness, W.A., Ruas, A.: Evaluation in the map generalisation process. In: Mackaness, W.A., Ruas, A., Sarjakoski, L.T. (eds.) Generalisation of Geographic Information, pp. 89–111. Elsevier, London (2007)CrossRefGoogle Scholar
  3. 3.
    Bard, S.: Quality assessment of cartographic generalisation. Transactions in GIS 8(1), 63–81 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Stoter, J., Burghardt, D., Duchêne, C., Baella, B., Bakker, N., Blok, C., Pla, M., Regnauld, N., Touya, G., Schmid, S.: Methodology for evaluating automated map generalization in commercial software. Computers, Environment and Urban Systems 33(5), 311–324 (2009)CrossRefGoogle Scholar
  5. 5.
    Moulin, H.: Fair Division and Collective Welfare. The MIT Press (2004)Google Scholar
  6. 6.
    Goodchild, M.F., Jeansoulin, R. (eds.): Data Quality in Geographic Information: From Errors to Uncertainty. Hermes, Paris (1998)Google Scholar
  7. 7.
    Ruas, A.: The roles of meso objects for generalisation. In: Proceedings of 9th International Symposium on Spatial Data Handling, Beijing, China, vol. 3b, pp. 50–63 (2000)Google Scholar
  8. 8.
    Ruas, A.: Automatic generalisation project: Learning process from interactive generalisation. OEEPE Official Publication 39 (2001)Google Scholar
  9. 9.
    Zhang, X., Stoter, J., Ai, T., Kraak, M.-J.: Formalization and data enrichment for automated evaluation of building pattern preservation. In: Guilbert, E., Lees, B., Leung, Y. (eds.) Proceedings of Joint International Conference on Theory, Data Handling and Modelling in GeoSpatial Information Science. ISPRS archives, vol. XXXVIII (2010)Google Scholar
  10. 10.
    Likert, R.: A technique for the measurement of attitudes. Archives of Psychology 22(140), 1–55 (1932)Google Scholar
  11. 11.
    Beard, K.: Constraints on rule formation. In: Buttenfield, B., McMaster, R. (eds.) Map Generalization, pp. 121–135. Longman, New York (1991)Google Scholar
  12. 12.
    Mustière, S., Zucker, J.-D., Saitta, L.: Abstraction-Based machine learning approach to cartographic generalisation. In: Proceedings of 9th International Symposium on Spatial Data Handling, Beijing, China, vol. 1a, pp. 50–63 (2000)Google Scholar
  13. 13.
    Bentham, J.: An Introduction to the Principles of Morals and Legislation. Clarendon Press, Oxford (1789)Google Scholar
  14. 14.
    Nongaillard, A., Mathieu, P., Jaumard, B.: A Realistic Approach to Solve the Nash Welfare. In: Demazeau, Y., Pavón, J., Corchado, J.M., Bajo, J. (eds.) 7th International Conference on PAAMS 2009. AISC, vol. 55, pp. 374–382. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Rawls, J.: A theory of Justice. Belknap, Cambridge (1971)Google Scholar
  16. 16.
    Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern. 18, 183–190 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Sen, A.: Rawls versus bentham: An axiomatic examination of the pure distribution problem. Theory and Decision 4(3), 301–309 (1974)zbMATHCrossRefGoogle Scholar
  18. 18.
    Tungodden, B.: Egalitarianism: Is leximin the only option? Economics and Philosophy 16(2), 229–245 (2000)CrossRefGoogle Scholar
  19. 19.
    Figueira, J., Greco, S., Ehrogott, M. (eds.): Multiple Criteria Decision Analysis: State of the Art Surveys. Springer (2005)Google Scholar
  20. 20.
    Taillandier, P., Gaffuri, J.: Designing generalisation evaluation function through human-machine dialogue. In: Proceedings of GIScience 2010, Zurich (2010)Google Scholar
  21. 21.
    Stigmar, H., Harrie, L.: Evaluation of analytical measures of map legibility. The Cartographic Journal 48(1), 41–53 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Guillaume Touya
    • 1
  1. 1.Laboratoire COGITIGNSaint-MandéFrance

Personalised recommendations