LocalAlert: Simulating Decentralized Ad-Hoc Collaboration in Emergency Situations

  • Silvia Nittel
  • Christopher Dorr
  • John C. Whittier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7478)


Today, advances in short-range ad-hoc communication and mobile phone technologies allow people to engage in ad-hoc collaborations based solely on their spatial proximity. These technologies can also be useful to enable a form of timely, self-organizing emergency response. Information about emergency events such as a fire, an accident or a toxic spill is most relevant to the people located nearby, and these people are likely also the first ones to encounter such emergencies. In this paper we explore the concept of decentralized ad-hoc collaboration across a range of emergency scenarios, its feasibility, and potentially effective communication protocols. We introduce the LocalAlert framework, an open source agent simulation framework that we have developed to build and test various form s of decentralized ad-hoc collaboration in different emergency situations. Initial experiments identify a number of parameters that affect the likelihood of a successful response under such scenarios.


decentralized spatial computing decentralized ad-hoc collaboration emergency situation management agent framework ad-hoc communication ad-hoc communication protocols 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buzing, P.C., Eiben, A.E., Schut, M.C.: Evolving Agent Societies with VUScape. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 434–441. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
  3. 3.
    City of Cupertino: Ready 95014 iPhone/iPad App,
  4. 4.
    Epstein, J., Axtell, R.: Growing Artificial Societies: Social Science from the Bottom Up. The MIT Press (1996)Google Scholar
  5. 5.
    Estrin, D., Govindan, R., Heidemann, J., Kumar, S.: Next century challenges: scalable coordination in sensor networks. In: Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking, MobiCom 1999, pp. 263–270. ACM, New York (1999)CrossRefGoogle Scholar
  6. 6.
    European Telecommunications Standards Institute EMTEL: Analysis of the Short Message Service (SMS) and Cell Broadcast Service (CBS) for Emergency Messaging applications. Tech. Rep. 102 444 V1.1.1, ETSI (February 2006)Google Scholar
  7. 7.
    Feeney, L.: A Taxonomy for Routing Protocols in Mobile Ad Hoc Networks. SICS Research Report (1999)Google Scholar
  8. 8.
    Jiang, J., Worboys, M., Nittel, S.: Qualitative change detection using sensor networks based on connectivity information. GeoInformatica 15, 305–328 (2011),, doi:10.1007/s10707-009-0097-0CrossRefGoogle Scholar
  9. 9.
    Jin, G., Nittel, S.: Efficient tracking of 2d objects with spatiotemporal properties in wireless sensor networks. Distributed and Parallel Databases 29, 3–30 (2011),, doi:10.1007/s10619-010-7075-2CrossRefGoogle Scholar
  10. 10.
    Mercury News: City of Cupertino launches emergency app for iPhone, iPad,
  11. 11.
    Moon, I.C., Carley, K.M.: Self-organizing social and spatial networks under what-if scenarios. In: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2007, pp. 252:1–252:8. ACM, New York (2007), CrossRefGoogle Scholar
  12. 12.
    Nielsen: NielsenWire, Nieslen Blog,
  13. 13.
    Nittel, S.: A survey of geosensor networks: Advances in dynamic environmental monitoring. Sensors 9(7), 5664–5678 (2009), CrossRefGoogle Scholar
  14. 14.
    Nittel, S., Duckham, M., Kulik, L.: Information Dissemination in Mobile Ad-Hoc Geosensor Networks. In: Egenhofer, M. J., Freksa, C., Miller, H.J. (eds.) GIScience 2004. LNCS, vol. 3234, pp. 206–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Nittel, S., Trigoni, N., Ferentinos, K., Neville, F., Nural, A., Pettigrew, N.: A drift-tolerant model for data management in ocean sensor networks. In: Proceedings of the 6th ACM International Workshop on Data Engineering for Wireless and Mobile Access, MobiDE 2007, pp. 49–58. ACM, New York (2007), CrossRefGoogle Scholar
  16. 16.
    Nittel, S., Winter, S., Nural, A., Cao, T.: Shared ride trip planning with geosensor networks. In: Miller, H.J. (ed.) Societies and Cities in the Age of Instant Access, GeoJournal Library, vol. 88, pp. 179–194. Springer, Netherlands (2007)CrossRefGoogle Scholar
  17. 17.
    Raubal, M., Winter, S.: A spatio-temporal model towards ad-hoc collaborative decision-making. In: Painho, M., Santos, M.Y., Pundt, H. (eds.) Geospatial Thinking. Lecture Notes in Geoinformation and Cartography, pp. 279–297. Springer, Heidelberg (2010)Google Scholar
  18. 18.
    Raubal, M., Winter, S., Dorr, C.: Decentralized Time Geography for Ad-Hoc Collaborative Planning. In: Hornsby, K.S., Claramunt, C., Denis, M., Ligozat, G. (eds.) COSIT 2009. LNCS, vol. 5756, pp. 436–452. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Wilensky, U.: NetLogo, Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL (1999),
  20. 20.
    Winter, S., Richter, K.F., Shi, M., Gan, H.S.: Get me out of here: collaborative evacuation based on local knowledge. In: Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Indoor Spatial Awareness, ISA 2011, pp. 35–42. ACM, New York (2011),
  21. 21.
    ZigBee Alliance: ZigBee,
  22. 22.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Silvia Nittel
    • 1
  • Christopher Dorr
    • 1
  • John C. Whittier
    • 1
  1. 1.Spatial Informatics, School of Computing and Information ScienceUniversity of MaineOronoUSA

Personalised recommendations