Advertisement

Natural Language Interfaces to Databases: An Analysis of the State of the Art

  • Rodolfo A. Pazos R.Email author
  • Juan J. González B.
  • Marco A. Aguirre L.
  • José A. Martínez F.
  • Héctor J. Fraire H.
Part of the Studies in Computational Intelligence book series (SCI, volume 451)

Abstract

People constantly make decisions based on information, most of which is stored in databases. Accessing this information requires the use of query languages to databases such as SQL. In order to avoid the difficulty of using these languages for users who are not computing experts, Natural Language Interfaces for Databases (NLIDB) have been developed, which permit to query databases through queries formulated in natural language. Although since the 60s many NLIDBs have been developed, their performance has not been satisfactory, there still remain very difficult problems that have not been solved by NLIDB technology, and there does not yet exist a standardized method of evaluation that permits to compare the performance of different NLIDBs. This chapter presents an analysis of NLIDBs, which includes their classification, techniques, advantages, disadvantages, and a proposal for a proper evaluation of them.

Keywords

Recall Rate User Query Logical Query Syntactic Tree Natural Language Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmad, R., Abid, M., Ali, R.: Efficient Transformation of Natural Language Query to SQL. In: Proc. 2nd Conference on Language and Technology, pp. 53–60 (2009)Google Scholar
  2. 2.
    Akerkar, R., Joshi, M.: Natural Language Interface Using Shallow Parsing. International Journal of Computer Science & Applications 5, 70–90 (2008)Google Scholar
  3. 3.
    Androutsopoulos, I., Ritchie, G., Thanisch, P.: Natural Language Interfaces to Databases - An Introduction. Natural Language Engineering 1, 29–81 (1995)CrossRefGoogle Scholar
  4. 4.
    BBC, Bill Gates: Mouse is out, Touch Screen and Natural Language Interface are in (2008), http://news.bbc.co.uk/player/nol/newsid_7170000/newsid_7174300/7174330.stm?bw=bb&mp=wm&asb=1&news=1&bbcws=1 (accessed June 10, 2012)
  5. 5.
    Bhootra, R.: Natural Language Interfaces: Comparing English Language Front End and English Query. Dissertation, Virginia Commonwealth University (2004)Google Scholar
  6. 6.
    Boldasov, M., Sokolova, E., Malkovsky, M.: User Query Understanding by the InBASE System as a Source for a Multilingual NL Generation Module. In: Proc. 5th International Conference on Text, Speech and Dialogue, pp. 33–40 (2002)Google Scholar
  7. 7.
    Boonjing, V., Hsu, C.: A New Feasible Natural Language Query Method. International Journal on AI Tools 15, 323–330 (2006)CrossRefGoogle Scholar
  8. 8.
    Cimiano, P., Haase, P., Heizmann, J.: Porting Natural Language Interfaces between Domains: an Experimental User Study with the ORAKEL System. In: Proc. 12th International Conference on Intelligent User Interfaces, pp. 180–190 (2007), doi:10.1145/1216295.1216330Google Scholar
  9. 9.
    Djahantigui, F., Norouzifard, M., Davarpanah, S., Shenassa, M.: Using Natural Language Processing in Order to Create SQL Queries. In: Proc. International Conference on Computer and Communication Engineering 2008, vol. 13, pp. 600–604 (2008)Google Scholar
  10. 10.
    El-Mouadib, F., Zubi, Z., Almagrous, A., El-Feghi, I.: Interactive natural language interface. Journal WSEAS Transactions on Computers 8, 661–680 (2009)Google Scholar
  11. 11.
    Giordani, A., Moschitti, A.: Semantic Mapping Between Natural Language Questions and SQL Queries via Syntactic Pairing. International Conference on Applications of Natural Language to Information Systems, pp. 207–222 (2010), doi:10.1007/978-3-642-12550-8_17Google Scholar
  12. 12.
    Jain, H., Bathia, P.: Hindi Language Interface to Databases. Journal of Global Research in Computer Science 2(4) (2011)Google Scholar
  13. 13.
    Joshi, M.: Intelligent Natural Language Interface. Dissertation, Maharshtra University (2006)Google Scholar
  14. 14.
    Karande, N., Patil, G.: Natural Language Database Interface for Selection of Data Using Grammar and Parsing. In: Proc. World Academy of Science Engineering Technology, vol. 59, pp. 484–487 (2009)Google Scholar
  15. 15.
    Kim, H.: A Dialogue-Based NLIDB System in a Schedule Management Domain. In: Proc. 33rd conference on Current Trends in Theory and Practice of Computer Science, pp. 869–877 (2007), doi:10.1007/978-3-540-69507-3_75Google Scholar
  16. 16.
    Kovacs, L.: SQL Generation for Natural Language Interface. Journal of Computer Science and Control Systems 2(18), 19–22 (2009)Google Scholar
  17. 17.
    Le, T.: A Frame-based Approach to Text Generation. In: The 21st Pacific Asia Conference on Language, Information and Computation, vol. 21, pp. 192–201 (2007)Google Scholar
  18. 18.
    Li, Y., Chaudhuri, I., Yang, H., et al.: DaNaLIX: a Domain-adaptive Natural Language Interface for Querying XML. In: Proc. 2007 ACM SIGMOD International Conference on Management of Data, pp. 1165–1168 (2007), doi:10.1145/1247480.1247643Google Scholar
  19. 19.
    Majeed, F., Shoaib, M., Ashraf, F.: An Approach to the Optimization of Menu-based Natural Language Interfaces to Databases. IJCSI International Journal of Computer Science Issues 8(4) (2011)Google Scholar
  20. 20.
    Martin, P., Appelt, D., Grozs, B., Pereira, F.: TEAM: An Experimental Transportable Natural-Language Interface. IEEE Database Eng. Bull 8(3), 10–22 (1985)Google Scholar
  21. 21.
    Microsoft Northwind and Pubs Sample Databases for SQL Server 2000 (2004), http://www.microsoft.com/en-us/download/details.aspx?id=23654 (accessed June 10, 2012)
  22. 22.
    Minock, M., Olofsson, P., Näslund, A.: Towards Building Robust Natural Language Interfaces to Databases. In: Kapetanios, E., Sugumaran, V., Spiliopoulou, M. (eds.) NLDB 2008. LNCS, vol. 5039, pp. 187–198. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Nguyen, A.K., Le, H.T.: Natural Language Interface Construction Using Semantic Grammars. In: Ho, T.-B., Zhou, Z.-H. (eds.) PRICAI 2008. LNCS (LNAI), vol. 5351, pp. 728–739. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Nihalani, N., Motwani, M., Silaka, S.: Natural Language Interface to Database using semantic matching. International Journal of Computer Applications 31, 29–34 (2011), doi:10.5120/3942-5552Google Scholar
  25. 25.
    Owda, M., Bandar, Z., Crockett, K.: Conversation-Based Natural Language Interface to Relational Databases. In: Proc. 2007 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, pp. 363–367 (2007)Google Scholar
  26. 26.
    Pakray, P.: Keyword Based Multilingual Restricted Domain Question Answering. Dissertation. Jadavpur University (2007)Google Scholar
  27. 27.
    Rangel, R.A.P., Joaquín Pérez, O., Juan Javier González, B., Gelbukh, A., Sidorov, G., Rodríguez M., M.J.: A Domain Independent Natural Language Interface to Databases Capable of Processing Complex Queries. In: Gelbukh, A., de Albornoz, Á., Terashima-Marín, H. (eds.) MICAI 2005. LNCS (LNAI), vol. 3789, pp. 833–842. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  28. 28.
    Pazos R., R.A., Rojas P., J.C., Santaolaya S., R., Martínez F., J.A., Gonzalez B., J.J.: Dialogue Manager for a NLIDB for Solving the Semantic Ellipsis Problem in Query Formulation. In: Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C. (eds.) KES 2010, Part II. LNCS, vol. 6277, pp. 203–213. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  29. 29.
    Pazos R., R.A., González B., J.J., Aguirre L., M.A.: Semantic Model for Improving the Performance of Natural Language Interfaces to Databases. In: Batyrshin, I., Sidorov, G. (eds.) MICAI 2011, Part I. LNCS, vol. 7094, pp. 277–290. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  30. 30.
    Popescu, A., Armanasu, A., Etzioni, O., et al.: Modern Natural Language Interfaces to Databases: Composing Statistical Parsing with Semantic Tractability. In: Proc. 20th International Conference on Computational Linguistics, vol. 141 (2004), doi:10.3115/1220355.1220376Google Scholar
  31. 31.
    Rao, G.: Natural Language Query Processing Using Semantic Grammar. International Journal on Computer Science and Engineering 2(2), 219–223 (2010)Google Scholar
  32. 32.
    Sarhan, A.: A Proposed Architecture for Dynamically built NLIDB Systems. International Journal of Knowledge Based Intelligent Engineering Systems 13(2), 59–70 (2009)MathSciNetGoogle Scholar
  33. 33.
    Sri International, Air Travel Information Service (1990), http://www.ai.sri.com/natural-language/projects/arpa-sls/atis.html (accessed June 10, 2012)
  34. 34.
    Stratica, N.: Using Semantic Templates for a Natural Language Interface to the CINDI Virtual Library. In: Data & Knowledge Engineering, vol. 55, pp. 4–19. Elsevier Science Publishers, The Netherlands (2005), doi:10.1016/j.datak.2004.12.002Google Scholar
  35. 35.
    Tang, L.R., Mooney, R.J.: Using Multiple Clause Constructors in Inductive Logic Programming for Semantic Parsing. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 466–477. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  36. 36.
    Templeton, M., Burget, J.: Problems in Natural-Language Interface to DBMS with Examples from EUFID. In: ANLC 1983 Proc. First Conference on Applied Natural Language Processing, pp. 3–16 (1983), doi:10.3115/974194.974197Google Scholar
  37. 37.
    Zhang, G., Chu, W., Meng, F., et al.: Query Formulation from High-Level Concepts for Relational Databases. In: Proc. 1999 User Interfaces to Data Intensive Systems, pp. 64–75 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rodolfo A. Pazos R.
    • 1
    Email author
  • Juan J. González B.
    • 1
  • Marco A. Aguirre L.
    • 1
  • José A. Martínez F.
    • 1
  • Héctor J. Fraire H.
    • 1
  1. 1.Instituto Tecnológico de Ciudad MaderoCd. MaderoMexico

Personalised recommendations