Variants of Ant Colony Optimization: A Metaheuristic for Solving the Traveling Salesman Problem

  • Iván Chaparro
  • Fevrier Valdez
Part of the Studies in Computational Intelligence book series (SCI, volume 451)

Abstract

Ant Colony Optimization (ACO) has been used to solve several optimization problems. However, in this paper, the variants of ACO have been applied to solve the Traveling Salesman Problem (TSP), which is used to evaluate the variants ACO as Benchmark problems. Also, we developed a graphical interface to allow the user input parameters and having as objective to reduce processing time through a parallel implementation. We are using ACO because for TSP is easily applied and understandable. In this paper we used the following variants of ACO: Max-Min Ant System (MMAS) and Ant Colony System (ACS).

Keywords

ACO TSP Optimization Combinatorial Problems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Almirón, M., Barán, B., Chaparro, E.: Ant Distributed System for Solving the Traveling Salesman Problem. In: XXV lnformatic Latinoamerican Conf.-CLEI, Paraguay, pp. 779–789 (1999)Google Scholar
  2. 2.
    Barán, B., Sosa, R.: A New approach for AntNet routing. In: IEEE Ninth International Conference onComputer Commnunications and Networks, Las Vegas, Nevada (2000)Google Scholar
  3. 3.
    de la Cruz, J., Mendoza, A., del Castillo, A., Paternina, C.: Comparative Analysis of heuristic Approaches Ant Q, Simulated Annealing and Tabu Search in Solving the Traveling Salesman. Departamento de Ciencias de la Computación e Inteligencia Artificial, E.T.S. Ingenieria Informática, Granada, España (2003)Google Scholar
  4. 4.
    Dorigo, M., Stutzle, T.: Ant Colony Optimization. Massachusetts Institute of Technology, MIT Press, Bradford, Cambridge (2004)MATHCrossRefGoogle Scholar
  5. 5.
    Favaretto, D., Moretti, E., Pellegrini, P.: Ant colony system for variants of traveling salesman problem with time windows, Technical Report. Applied Mathematics Department of Ca’ Foscari University of Venice, No. 120/2004 (2004)Google Scholar
  6. 6.
    Cordón, O., Moya, F., Zarco, C.: A new evolutionary algorithm combining simulated annealing and genetic programming for relevance feedback in fuzzy information retrieval systems. Soft Computing 6(5), 308–319 (2002)MATHCrossRefGoogle Scholar
  7. 7.
    Pavez, A., Acevedo, H.: An Algorithm ACS Motion Prompt and Operator 2-Opt, Departamento de Informatica. Universidad Técnica Federico Santa Maria (2002)Google Scholar
  8. 8.
    Website of Ant Colony Optimization Algorithms official, http://www.aco-metaheuristic.org (accessed May 5, 2012)
  9. 9.
    Website of interface design, http://www.matpic.com, MC. Diego O. Barragán Guerrero, Universidad Estatal de Campinas, Brasil, www.unicamp.br (accessed May 2012)
  10. 10.
    Website of Matlab, http://www.mathworks.com (accessed May 2012)

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Iván Chaparro
    • 1
  • Fevrier Valdez
    • 1
  1. 1.Tijuana Institute of TechnologyTijuanaMéxico

Personalised recommendations