Particle Swarm Optimization with Dynamic Parameter Adaptation Using Fuzzy Logic for Benchmark Mathematical Functions

  • Frumen Olivas
  • Oscar Castillo
Part of the Studies in Computational Intelligence book series (SCI, volume 451)


In this paper a new method for dynamic parameter adaptation in particle swarm optimization (PSO) is proposed. PSO is a metaheuristic inspired in social behaviors, which is very useful in optimization problems. In this paper we propose an improvement to the convergence and diversity of the swarm in PSO using fuzzy logic. Simulation results show that the proposed approach improves the performance of PSO.


Fuzzy Logic Particle Swarm Optimization Dynamic parameter adaptation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdelbar Ashraf, M., Abdelshahid, S., Wunsch, D.C.: Fuzzy PSO: A Generalization of Particle Swarm Optimization. In: Proceedings 2005 IEEE International Joint Conference on Neural Networks, vol. 2, pp. 1086–1091 (2005)Google Scholar
  2. 2.
    Juana, A.S.: Optimización por nube de partículas (PSO) de controladores difusos para robots autónomos móviles. Master’s thesis at Tijuana Institute of Technology (2011)Google Scholar
  3. 3.
    Engelbrecht Andries, P.: Fundamentals of Computational Swarm Intelligence. University of Pretoria, South Africa (2005)Google Scholar
  4. 4.
    Haupt Randy, L., Ellen, H.S.: Practical Genetic Algorithms, 2nd edn. A Wiley-Interscience publication, New York (2004)MATHGoogle Scholar
  5. 5.
    Jang, J.-S.R., Sun, C.-T., Mizutani, E.: Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Prentice-Hall, Upper Saddle River (1997)Google Scholar
  6. 6.
    Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann, San Francisco (2001)Google Scholar
  7. 7.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc. IEEE Int. Conf. on Neural Networks, IV, pp. 1942–1948. IEEE Service Center, Piscataway (1995)CrossRefGoogle Scholar
  8. 8.
    Molga, M., Smutnicki, C.: Test functions for optimization needs (2005)Google Scholar
  9. 9.
    Zadeh, L.: Fuzzy sets. Information & Control 8, 338–353 (1965)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Valdez, F., Melin, P., Castillo, O.: An improved evolutionary method with fuzzy logic for combining Particle Swarm Optimization and Genetic Algorithms. Appl. Soft Comput. 11(2), 2625–2632 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Frumen Olivas
    • 1
  • Oscar Castillo
    • 1
  1. 1.Tijuana Institute of TechnologyTijuanaMéxico

Personalised recommendations