Advertisement

A New Method for Type-2 Fuzzy Integration in Ensemble Neural Networks Based on Genetic Algorithms

  • Martha Pulido
  • Patricia Melin
Part of the Studies in Computational Intelligence book series (SCI, volume 451)

Abstract

This paper describes a proposed method for type-2 fuzzy integration that can be used in the fusion of responses for an ensemble neural network. We consider the case of the design of a type-2 fuzzy integrator for fusion of a neural network ensemble. The network structure of the ensemble may have a maximum of 5 modules. This integrator consists of 32 fuzzy rules, with 5 inputs depending on the number of modules of the neural network ensemble and one output. Each input and output linguistic variable of the fuzzy system uses Gaussian membership functions. The performance of type-2 fuzzy integrators is analyzed under different levels of uncertainty to find out the best design of the membership functions. In this case the proposed method is applied to time series prediction.

Keywords

Ensemble Neural Networks Genetic Algorithms Optimization Time Series Prediction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brockwell, P.D., Richard, A.D.: Introduction to Time Series and Forecasting, pp. 1–219. Springer, New York (2002)MATHGoogle Scholar
  2. 2.
    Castillo, O., Melin, P.: Type-2 Fuzzy Logic: Theory and Applications. Neural Networks, 30–43 (2008)Google Scholar
  3. 3.
    Castillo, O., Melin, P.: Hybrid intelligent systems for time series prediction using neural networks, fuzzy logic, and fractal theory. IEEE Transactions on Neural Networks 13(6), 1395–1408 (2002)CrossRefGoogle Scholar
  4. 4.
    Castillo, O., Melin, P.: Simulation and Forecasting Complex Economic Time Series Using Neural Networks and Fuzzy Logic. In: Proceedings of the International Neural Networks Conference, vol. 3, pp. 1805–1810 (2001)Google Scholar
  5. 5.
    Castillo, O., Melin, P.: Simulation and Forecasting Complex Financial Time Series Using Neural Networks and Fuzzy Logic. In: Proceedings the IEEE the International Conference on Systems, Man and Cybernetics, vol. 4, pp. 2664–2669 (2001)Google Scholar
  6. 6.
    Dow Jones Company (10 de Enero de, 2010), http://www.dowjones.com
  7. 7.
    Dow Jones Indexes (September 5, 2010), http://www.djindexes.com
  8. 8.
    Golberg, D.: Genetic Algorithms in search, optimization and machine learning. Addison Wesley (1989)Google Scholar
  9. 9.
    Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Sof Computing. Prentice Hall (1996)Google Scholar
  10. 10.
    Karnik, N., Mendel, M.: Applications of type-2 fuzzy logic systems to forecasting of time-series. Information Sciences 120(1-4), 89–111 (1999)MATHCrossRefGoogle Scholar
  11. 11.
    Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active learning. In: Tesauro, G., Touretzky, D., Leen, T. (eds.) Advances in Neural Information Processing Systems 7, Denver, CO, pp. 231–238. MIT Press, Cambridge (1995) 1001Google Scholar
  12. 12.
    Holland, J.: Adaptation in natural and artificial systems. University of Michigan Press (1975)Google Scholar
  13. 13.
    Maguire, L.P., Roche, B., McGinnity, T.M., McDaid, L.J.: Predicting a chaotic time series using a fuzzy neural network 12(1-4), 125–136 (1998)Google Scholar
  14. 14.
    Melin, P., Castillo, O., Gonzalez, S., Cota, J., Trujillo, W., Osuna, P.: Design of Modular Neural Networks with Fuzzy Integration Applied to Time Series Prediction, vol. 41, pp. 265–273. Springer, Heidelberg (2007)Google Scholar
  15. 15.
    Multaba, I.M., Hussain, M.A.: Application of Neural Networks and Other Learning. Technologies in Process Engineering. Imperial College Press (2001)Google Scholar
  16. 16.
    Plummer, E.A.: Time series forecasting with feed-forward neural Networks: uidelines and limitations. University of Wyoming (July 2000)Google Scholar
  17. 17.
    Pulido, M., Mancilla, A., Melin, P.: An Ensemble Neural Network Architecture with Fuzzy Response Integration for Complex Time Series Prediction. In: Castillo, O., Pedrycz, W., Kacprzyk, J. (eds.) Evolutionary Design of Intelligent Systems in Modeling, Simulation and Control. SCI, vol. 257, pp. 85–110. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Sharkey, A.: One combining Artificial of Neural Nets. Department of Computer Science University of Sheffield, U.K (1996)Google Scholar
  19. 19.
    Sharkey, A.: A Combining artificial neural nets: ensemble and modular multinet systems. Springer, London (1999)CrossRefGoogle Scholar
  20. 20.
    Shimshoni, Y.N.: Intrator Classification of seismic signal by integrating ensemble of neural networks. IEEE Transactions Signal Processing 461(5), 1194–1201 (1998)CrossRefGoogle Scholar
  21. 21.
    Sollich, P., Krogh, A.: Learning with ensembles: how over-fitting can be useful. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems 8, Denver, CO, pp. 190–196. MIT Press, Cambridge (1996)Google Scholar
  22. 22.
    Yadav, R.N., Kalra, P.K., John, J.: Time series prediction with single multiplicative neuron model. Soft Computing for Time Series Prediction, Applied Soft Computing 7(4), 1157–1163 (2007)Google Scholar
  23. 23.
    Yao, X., Liu, Y.: Making use of population information in evolutionary artificial neural networks. IEEE Transactions on Systems, Man and Cybernetics - Part B: Cybernetics 28(3), 417–425 (1998)MathSciNetGoogle Scholar
  24. 24.
    Zhao, L., Yang, Y.: PSO-based single multiplicative neuron model for time series prediction. Expert Systems with Applications 36(2), Part 2, 2805–2812 (March 2009)Google Scholar
  25. 25.
    Zhou, Z.-H., Jiang, Y., Yang, Y.-B., Chen, S.-F.: Lung cancer cell identification based on artificial neural network ensembles. Artificial Intelligence in Medicine 24(1), 25–36 (2002)MATHCrossRefGoogle Scholar
  26. 26.
    Reeves, R.C., Row, E.J.: Genetic Algorithms: Principles and Perspectives, A Guide to GA Theory, pp. 2–17. Kluwer Academic Publishers, New York (2003)Google Scholar
  27. 27.
    Yadav, R.N., Kalra, P.K., John, J.: Time series prediction with single multiplicative neuron model. Soft Computing for Time Series Prediction, Applied Soft Computing 7(4), 1157–1163 (2007)Google Scholar
  28. 28.
    Zhao, L., Yang, Y.: PSO-based single multiplicative neuron model for time series prediction. Expert Systems with Applications 36(2), Part 2, 2805–2812 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Martha Pulido
    • 1
  • Patricia Melin
    • 1
  1. 1.Tijuana Institute of TechnologyTijuanaMéxico

Personalised recommendations