Advertisement

Comments on a Cryptosystem Proposed by Wang and Hu

  • R. Durán Díaz
  • L. Hernández Encinas
  • J. Muñoz Masqué
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 189)

Abstract

In this paper, we analyze a new proposal for a knapsack-type cryptosystem, recently published by Wang and Hu ([1]), along with two cryptanalyses of it, carried out by Youssef ([2]) and Lee ([3]). The cryptosystem proves to be safe only if the keys have very large sizes, but this severely impacts the use of the system from a practical point of view.

Keywords

Equivalent keys Public-key cryptography Quadratic knapsack problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, B., Hu, Y.: Quadratic compact knapsack public-key cryptosystem. Comput. Math. Appl. 59(1), 194–206 (2010)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Youssef, A.M.: Cryptanalysis of a quadratic knapsack cryptosystem. Comput. Math. Appl. 61(4), 1261–1265 (2011)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Lee, M.S.: Cryptanalysis of a quadratic compact knapsack public-key cryptosystem. Comput. Math. Appl. 62, 3614–3621 (2011)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Kate, A., Goldberg, I.: Generalizing cryptosystems based on the subset sum problem. Int. J. Inf. Secur. 10(3), 189–199 (2011)CrossRefGoogle Scholar
  5. 5.
    Wang, B., Wu, Q., Hu, Y.: A knapsack-based probabilistic encryption scheme. Inform. Sci. 177(19), 3981–3994 (2007)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Youssef, A.M.: Cryptanalysis of a knapsack-based probabilistic encryption scheme. Inform. Sci. 179(18), 3116–3121 (2009)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Herrero, Á., Zurutuza, U., Corchado, E.: A Neural-Visualization IDS for Honeynet Data. International Journal of Neural Systems 22(2), 1–18 (2012)CrossRefGoogle Scholar
  8. 8.
    Liu, H., Abraham, A., Snášel, V., McLoone, S.: Swarm scheduling approaches for work-flow applications with security constraints in distributed data-intensive computing environments. Information Sciences 192, 228–243 (2012)CrossRefGoogle Scholar
  9. 9.
    Corchado, E., Herrero, Á.: Neural visualization of network traffic data for intrusion detection. Applied Soft Computing 11(2), 2042–2056 (2011)CrossRefGoogle Scholar
  10. 10.
    Panda, M., Abraham, A., Das, S., Patra, M.R.: Network intrusion detection system: A machine learning approach. Intelligent Decision Technologies 5(4), 347–356 (2011)Google Scholar
  11. 11.
    Lenstra, A., Lenstra Jr., H., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 515–534 (1982)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Nguyen, P.Q., Vallée, B. (eds.): The LLL Algorithm. Survey and Applications. Information Security and Cryptography. Springer, Heidelberg (2010)Google Scholar
  13. 13.
    Hernández Encinas, L., Muñoz Masqué, J., Queiruga Dios, A.: Analysis of the efficiency of the Chor-Rivest cryptosystem implementation in a safe-parameter range. Inform. Sci. 179, 4219–4226 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Vaudenay, S.: Cryptanalysis of the Chor-Rivest cryptosystem. J. Cryptology 14, 87–100 (2001)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Merkle, R., Hellman, M.: Hiding information and signatures in trap-door knapsacks. IEEE Trans. Inform. Theory 24(5), 525–530 (1978)CrossRefGoogle Scholar
  16. 16.
    Shamir, A.: A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystem. IEEE Trans. Inform. Theory 30(5), 699–704 (1984)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Bach, E., Shallit, J.: Algorithmic Number Theory, Vol. I: Efficient Algorithms. The MIT Press, Cambridge (1996)Google Scholar
  18. 18.
    Knuth, D.: The Art of Computer Programming, 3rd edn. Addison-Wesley Series in Computer Science, vol. 2 - Seminumerical Algorithms. Addison-Wesley Publishing Co., Reading (1998)Google Scholar
  19. 19.
    Apostol, T.: Introduction to Analytic Number Theory, 4th corrected edn. Undergraduate Texts in Mathematics. Springer, NY (1976)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • R. Durán Díaz
    • 1
  • L. Hernández Encinas
    • 2
  • J. Muñoz Masqué
    • 2
  1. 1.Universidad de AlcaláAlcalá de HenaresSpain
  2. 2.Instituto de Seguridad de la Información, CSICMadridSpain

Personalised recommendations