Advertisement

Sensor Networks Security Based on Sensitive Robots Agents: A Conceptual Model

  • Camelia-M. Pintea
  • Petrica C. Pop
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 189)

Abstract

Multi-agent systems are currently applied to solve complex problems. From this class of problem the security of networks is a very important and sensitive problem. We propose in this paper a new conceptual model Hybrid Sensitive Robot Metaheuristic for Intrusion Detection. The proposed technique could be used with machine learning based intrusion detection techniques. Our novel model uses the reaction of virtual sensitive robots to different stigmergic variables in order to keep the tracks of the intruders when securing a sensor network.

Keywords

intrusion detection sensor network intelligent agents 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alhazzaa, L.: Intrusion Detection Systems using Genetic Algorithms (2007)Google Scholar
  2. 2.
    Banerjee, S., Grosan, C., Abraham, A.: IDEAS: Intrusion Detection based on Emotional Ants for Sensors. In: Intelligent Systems Design and Applications, pp. 344–349. IEEE C.S. (2005)Google Scholar
  3. 3.
    Beg, S., Naru, U., Ashraf, M., Mohsin, S.: Feasibility of Intrusion Detection System with High Performance Computing: A Survey. Int. J. for Advances in Computer Science 1(1), 26–35 (2010)Google Scholar
  4. 4.
    Bonabeau, E., Dorigo, M., Tehraulaz, G.: Swarm intelligence from natural to artificial systems. Oxford Univ. Press, Oxford (1999)MATHGoogle Scholar
  5. 5.
    Chira, C., Pintea, C.-M., Dumitrescu, D.: Sensitive stigmergic agent systems: a hybrid approach to combinatorial optimization. In: Innovations in Hybrid Intelligent Systems, Advances in Soft Computing, vol. 44, pp. 33–39 (2008)Google Scholar
  6. 6.
    Chira, C., Pintea, C.-M., Dumitrescu, D.: Cooperative learning sensitive agent system for combinatorial optimization. In: NICSO 2007. SCI, vol. 129, pp. 347–355 (2008)Google Scholar
  7. 7.
    Chira, C., Dumitrescu, D., Pintea, C.-M.: Learning sensitive stigmergic agents for solving complex problems. Computing and Informatics 29(3), 337–356 (2010)Google Scholar
  8. 8.
    Crothers, T.: Implementing Intrusion Detection Systems. Wiley (2003)Google Scholar
  9. 9.
    Dhanalakshmi, Y., Babu, I.R.: Intrusion detection using data mining along fuzzy logic and genetic algorithms. Int. J. of Computer Science and Network Security 8(2), 27–32 (2008)Google Scholar
  10. 10.
    Dorigo, M., Gambardella, L.M.: Ant Colony System: A cooperative learning approach to the Traveling Salesman Problem. IEEE Trans. Evol. Comp. 1, 53–66 (1997)CrossRefGoogle Scholar
  11. 11.
    Grassé, P.-P.: La Reconstruction du Nid et Les Coordinations Interindividuelles Chez Bellicositermes Natalensis et Cubitermes. Insect Soc. 6, 41–80 (1959)CrossRefGoogle Scholar
  12. 12.
    Iantovics, B., Enachescu, C.: Intelligent Complex Evolutionary Agent-based Systems. In: Development of Intelligent and Complex Systems, AIP, vol. 124, pp. 116–124 (2009)Google Scholar
  13. 13.
    Ierace, N., Urrutia, C., Bassett, R.: Intrusion Prevention Systems. In: Ubiquity, p. 2. ACM (2005)Google Scholar
  14. 14.
    Kim, B., Yoon, S., Oh, J.: Multi-hash based Pattern Matching Mechanism for High-Performance Intrusion Detection. Int. J. of Computers 1(3), 115–124 (2009)Google Scholar
  15. 15.
    Lee, W., Stolfo, S., Mok, K.: Mining audit data to build intrusion detection models, Knowledge Discovery and Data Mining, pp. 66–72. AAAI Press, New York (1998)Google Scholar
  16. 16.
    Luo, J.: Integrating Fuzzy Logic and Data Mining Methods for Intrusion detection, Master thesis, Mississippi State University (1999)Google Scholar
  17. 17.
    Northcutt, S.: Network Intrusion Detection. New Riders Publishers (2002)Google Scholar
  18. 18.
    Ryan, J., Lin, M.-J., Miikkulainen, R.: Intrusion Detection with Neural Networks. In: Advances in Neural Information Processing Systems, vol. 10. MIT Press (1998)Google Scholar
  19. 19.
    Pintea, C.-M., Chira, C., Dumitrescu, D., Pop, P.C.: A Sensitive Metaheuristic for Solving a Large Optimization Problem. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 551–559. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Pintea, C.-M., Chira, C., Dumitrescu, D.: Sensitive Ants: Inducing Diversity in the Colony. In: Krasnogor, N., Melián-Batista, M.B., Pérez, J.A.M., Moreno-Vega, J.M., Pelta, D.A. (eds.) NICSO 2008. SCI, vol. 236, pp. 15–24. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Pintea, C.M.: Combinatorial optimization with bio-inspired computing. PhD Thesis, Babes-Bolyai University (2008)Google Scholar
  22. 22.
    Scarfone, K., Mell, P.: Guide to Intrusion Detection and Prevention Systems, IDPS (2007), http://csrc.nist.gov/publications/nistpubs/800-94/SP800-94.pdf
  23. 23.
    Selvakani, S., Rajes, R.S.: Genetic algorithm for forming rules for intrusion detection. Int. J. of Computer Science and Network Security 7(11), 285–290 (2007)Google Scholar
  24. 24.
    Stoean, R., et al.: Support Vector Machine Learning with an Evolutionary Engine. J. Operational Research Society 60(8), 1116–1122 (2009)MATHCrossRefGoogle Scholar
  25. 25.
    Yao, J.T., Zhao, S.L., Saxton, L.V.: A study on fuzzy intrusion detection. In: SPIE, Data Mining, Intrusion Detection, Information Assurance and Data Networks Security, vol. 5812, pp. 23–30 (2005)Google Scholar
  26. 26.
    White, T.: Expert Assessment of Stigmergy: A Report for the Department of National Defence, http://www.scs.carleton.ca/~arpwhite/stigmergy-report.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Tech Univ Cluj-Napoca, North Univ Center Baia MareBaia MareRomania

Personalised recommendations