Advertisement

Correlation Methods of OCR Algorithm for Traffic Sign Detection Implementable in Microcontrollers

  • Radim Hercik
  • Roman Slaby
  • Zdenek Machacek
  • Jiri Koziorek
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 189)

Abstract

This paper focuses on the correlation methods applicable for the recognition system of speed limit traffic signs and correlation methods comparison. The correlation method is one possible manner of the OCR algorithm (Optical Character Recognition) used to determine the degree of similarity between the input matrix and the defined pattern matrix. The presented correlation methods are verified using the proposed comparison algorithm, where the output data are evaluated by statistical methods of the exploratory statistic data analysis. The part of the recognition system for OCR algorithm proceeds is very time consuming and the limitation of microcontroller type depends on frequency instruction processing. High accuracy of the recognition system can be achieved by increasing the resolution of camera system, by segmentation methods of input image signal, correlation method type.

Keywords

image processing correlation method Statistical method OCR algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ozana, S., Machacek, Z.: Implementation of the Mathematical Model of a Generating Block in Matlab&Simulink Using S-functions. In: The Second International Conference on Computer and Electrical Engineering ICCEE. Session 8, pp. 431–435 (2009)Google Scholar
  2. 2.
    Hlavac, V., Sedlacek, M.: Zpracování signálu a obrazu, 255 p. BEN, Praha (2007) ISBN 978-80-01-03110-0Google Scholar
  3. 3.
    Gibson, J.D.: Handbook of Image & Video Processing, 891 p. Academic Press, London (2000)Google Scholar
  4. 4.
    Machacek, Z., Hercik, R., Slaby, R.: Smart User Adaptive System for Intelligent Object Recognizing. In: Nguyen, N.T., Trawiński, B., Jung, J.J. (eds.) New Challenges for Intelligent Information and Database Systems. SCI, vol. 351, pp. 197–206. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Bris, R.: Exploratorní analýza proměnných. Ostrava. Scriptum. VŠB-Technical University of OstravaGoogle Scholar
  6. 6.
    Krejcar, O., Jirka, J., Janckulik, D.: Use of Mobile Phone as Intelligent Sensor for Sound Input Analysis and Sleep State Detection. Sensors 11, 6037–6055 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Radim Hercik
    • 1
  • Roman Slaby
    • 1
  • Zdenek Machacek
    • 1
  • Jiri Koziorek
    • 1
  1. 1.VSB - Technical University of OstravaOstravaCzech Republic

Personalised recommendations