Neural Network Ensembles Design with Self-Configuring Genetic Programming Algorithm for Solving Computer Security Problems

  • Eugene Semenkin
  • Maria Semenkina
  • Ilia Panfilov
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 189)


Artificial neural networks based ensembles are used for solving the computer security problems. Ensemble members and the ensembling method are generated automatically with the self-configuring genetic programming algorithm that does not need preliminary adjusting. Performance of the approach is demonstrated with test problems and then applied to two real world problems from the field of computer security – intrusion and spam detection. The proposed approach demonstrates results competitive to known techniques.


self-configuring genetic programming artificial neural networks ensembles intrusion detection spam detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maloof, M. (ed.): Machine Learning and Data Mining for Computer Security. Springer (2006)Google Scholar
  2. 2.
    Victoire, T.A., Sakthivel, M.: A Refined Differential Evolution Algorithm Based Fuzzy Classifier for Intrusion Detection. European Journal of Scientific Research 65(2), 246–259 (2011)Google Scholar
  3. 3.
    Bloedorn, E.E., Talbot, L.M., DeBarr, D.D.: Data Mining Applied to Intrusion Detection: MITRE Experiences. In: Machine Learning and Data Mining for Computer Security: Methods and Applications. Springer, London (2006)Google Scholar
  4. 4.
    Julisch, K.: Intrusion Detection Alarm Clustering. In: Machine Learning and Data Mining for Computer Security Methods and Applications. Springer, London (2006)Google Scholar
  5. 5.
    Patcha, A., Park, J.-M.: An Overview of Anomaly Detection Techniques: Existing Solutions and Latest Technological Trends. Computer Networks (2007)Google Scholar
  6. 6.
    Özgür, L., Güngör, T., Gürgen, F.: Spam Mail Detection Using Artificial Neural Network and Bayesian Filter. In: Yang, Z.R., Yin, H., Everson, R.M. (eds.) IDEAL 2004. LNCS, vol. 3177, pp. 505–510. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Han, C., Li, Y., Yang, D., Hao, Y.: An intrusion detection system based on neural network. In: Proceedings of Mechatronic Science, Electric Engineering and Computer (MEC), pp. 2018–2021 (2011)Google Scholar
  8. 8.
    Saravanakumar, S., Mohanaprakash, T.A., Dharani, R., Kumar, C.J.: Analysis of ANN-based Echo State Network Intrusion Detection in Computer Networks. International Journal of Computer Science and Telecommunications 3(4), 8–13 (2012)Google Scholar
  9. 9.
    Panda, M., Abraham, A., Das, S., Patra, M.R.: Network intrusion detection system: A machine learning approach. Intelligent Decision Technologies 5(4), 347–356 (2011)Google Scholar
  10. 10.
    Pervez, S., Ahmad, I., Akram, A., Swati, S.U.: A Comparative Analysis of Artificial Neural Network Technologies in Intrusion Detection Systems. In: Proceedings of the 6th WSEAS International Conference on Multimedia, Internet & Video Technologies, Lisbon, Portugal, pp. 84–89 (2006)Google Scholar
  11. 11.
    Dietterich, T.G.: An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Machine Learning 40(2), 139–158 (2000)CrossRefGoogle Scholar
  12. 12.
    Ho, T.K., Hull, J.J., Srihari, S.N.: Decision combination in multiple classifier systems. IEEE Transactions on Pattern Analysis and Machine Intelligence 16(1), 66–75 (1994)CrossRefGoogle Scholar
  13. 13.
    Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)MathSciNetMATHGoogle Scholar
  14. 14.
    Friedman, J.H., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. Annals of Statistics 28(2), 337–374 (2000)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Navone, H.D., Granitto, P.M., Verdes, P.F., Ceccatto, H.A.: A learning algorithm for neural network ensembles. In: Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial, vol. 12, pp. 70–74 (2001)Google Scholar
  16. 16.
    Johansson, U., Lofstrom, T., Konig, R., Niklasson, L.: Building Neural Network Ensembles using Genetic Programming. In: International Joint Conference on Neural Networks (2006)Google Scholar
  17. 17.
    Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming (2008),,
  18. 18.
    Bukhtoyarov, V., Semenkina, O.: Comprehensive evolutionary approach for neural network ensemble automatic design. In: Proceedings of the IEEE World Congress on Computational Intelligence, pp. 1640–1645 (2010)Google Scholar
  19. 19.
    Gomez, J.: Self Adaptation of Operator Rates in Evolutionary Algorithms. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 1162–1173. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Meyer-Nieberg, S., Beyer, H.-G.: Self-Adaptation in Evolutionary Algorithms. In: Lobo, F., Lima, C., Michalewicz, Z. (eds.) Parameter Setting in Evolutionary Algorithm, pp. 47–75 (2007)Google Scholar
  21. 21.
    O’Neill, M., Vanneschi, L., Gustafson, S., Banzhaf, W.: Open issues in genetic programming. In: Genetic Programming and Evolvable Machines, vol. 11, pp. 339–363 (2010)Google Scholar
  22. 22.
    Finck, S., et al.: Real-parameter black-box optimization benchmarking 2009. Presentation of the noiseless functions. Technical Report Researh Center PPE (2009)Google Scholar
  23. 23.
    Semenkin, E., Semenkina, M.: Self-configuring genetic programming algorithm with modified uniform crossover. In: IEEE Congress on Evolutionary Computation (CEC 2012), Brisbane, Australia (accepted for publication, 2012)Google Scholar
  24. 24.
    Semenkin, E., Semenkina, M.: Self-configuring Genetic Algorithm with Modified Uniform Crossover Operator. In: Tan, Y., Shi, Y., Ji, Z. (eds.) ICSI 2012, Part I. LNCS, vol. 7331, pp. 414–421. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  25. 25.
    Frank, A., Asuncion, A.: UCI Machine Learning Repository. School of Information and Computer Science. University of California, Irvine (2010),
  26. 26.
    Yu, J.J.Q., Lam, A.Y.S., Li, V.O.K.: Evolutionary Artificial Neural Network Based on Chemical Reaction Optimization. In: IEEE Congress on Evolutionary Computation (CEC 2011), New Orleans, LA (2011)Google Scholar
  27. 27.
    Bukhtoyarov, V., Semenkin, E., Shabalov, A.: Neural Networks Ensembles Approach for Simulation of Solar Arrays Degradation Process. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012, Part III. LNCS, vol. 7208, pp. 186–195. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  28. 28.
    Stolfo, S., Fan, W., Lee, W., Prodromidis, A., Chan, P.: Cost-based Modeling for Fraud and Intrusion Detection: Results from the JAM Project. In: Proceedings of the 2000 DARPA Information Survivability Conference and Exposition, DISCEX 2000 (2000)Google Scholar
  29. 29.
    Malik, A.J., Shahzad, W., Khan, F.A.: Binary PSO and random forests algorithm for PROBE attacks detection in a network. In: IEEE Congress on Evolutionary Computation, pp. 662–668 (2011)Google Scholar
  30. 30.
    Dimitrakakis, C., Bengio, S.: Online Policy Adaptation for Ensemble Classifiers. IDIAP Research Report 03-69 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Eugene Semenkin
    • 1
  • Maria Semenkina
    • 1
  • Ilia Panfilov
    • 1
  1. 1.Department of System Analysis and Operation ResearchSiberian State Aerospace UniversityKrasnoyarskRussia

Personalised recommendations