Web Spam Detection Using MapReduce Approach to Collective Classification

  • Wojciech Indyk
  • Tomasz Kajdanowicz
  • Przemyslaw Kazienko
  • Slawomir Plamowski
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 189)

Abstract

The web spam detection problem was considered in the paper. Based on interconnected spam and no-spam hosts a collective classification approach based on label propagation is aimed at discovering the spam hosts. Each host is represented as network node and links between hosts constitute network’s edges. The proposed method provides reasonable results and is able to compute large data as is settled in MapReduce programming model.

Keywords

MapReduce collective classification classification in networks label propagation web spam detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Indyk, W., Kajdanowicz, T., Kazienko, P., Plamowski, S.: MapReduce approach to collective classification for networks. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS, vol. 7267, pp. 656–663. Springer, Heidelberg (2012)Google Scholar
  2. 2.
    Ntoulas, A., Najork, M., Manasse, M., Fetterly, D.: Detecting spam web pages through content analysis. In: Proceedings of the 15th International Conference on World Wide Web, WWW 2006, pp. 83–92. ACM, New York (2006)Google Scholar
  3. 3.
    Gyongyi, Z., Garcia-Molina, H.: Web spam taxonomy. Technical Report 2004-25, Stanford InfoLab (March 2004)Google Scholar
  4. 4.
    Drost, I., Scheffer, T.: Thwarting the Nigritude Ultramarine: Learning to Identify Link Spam. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 96–107. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Davison, B.D.: Recognizing nepotistic links on the web. In: AAAI 2000 Workshop on Artificial Intelligence for Web Search, pp. 23–28. AAAI Press (2000)Google Scholar
  6. 6.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web (1999)Google Scholar
  7. 7.
    Mishne, G.: Blocking blog spam with language model disagreement. In: Proceedings of the First International Workshop on Adversarial Information Retrieval on the Web (AIRWeb 2005) (2005)Google Scholar
  8. 8.
    Zhang, H., Goel, A., Govindan, R., Mason, K., Van Roy, B.: Making Eigenvector-Based Reputation Systems Robust to Collusion. In: Leonardi, S. (ed.) WAW 2004. LNCS, vol. 3243, pp. 92–104. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    da Costa Carvalho, A.L., Chirita, P.A., Carvalho, C., Calado, P., Alex, P., Chirita, R., Moura, E.S.D., Nejdl, W.: Site level noise removal for search engines. In: Proc. of International World Wide Web Conference (WWW), pp. 73–82. ACM Press (2006)Google Scholar
  10. 10.
    Gyngyi, Z., Garcia-molina, H., Pedersen, J.: Combating web spam with trustrank. In: VLDB, pp. 576–587. Morgan Kaufmann (2004)Google Scholar
  11. 11.
    Wu, B., Davison, B.D.: Identifying link farm spam pages. In: Proceedings of the 14th International World Wide Web Conference, pp. 820–829. ACM Press (2005)Google Scholar
  12. 12.
    Wu, B., Goel, V., Davison, B.D.: Topical trustrank: using topicality to combat web spam (2006)Google Scholar
  13. 13.
    Benczur, A.A., Csalogany, K., Sarlos, T., Uher, M.: Spamrank - fully automatic link spam detection. In: Proceedings of the First International Workshop on Adversarial Information Retrieval on the Web, AIRWeb (2005)Google Scholar
  14. 14.
    Gyngyi, Z., Garcia-molina, H.: Link spam alliances. In: Proceedings of the 31st International Conference on Very Large Data Bases (VLDB), pp. 517–528 (2005)Google Scholar
  15. 15.
    Fetterly, D., Manasse, M., Najork, M.: Spam, damn spam, and statistics: using statistical analysis to locate spam web pages. In: Proceedings of the 7th International Workshop on the Web and Databases: colocated with ACM SIGMOD/PODS 2004, WebDB 2004, pp. 1–6. ACM, New York (2004)Google Scholar
  16. 16.
    Becchetti, L., Castillo, C., Donato, D., Leonardi, S., Baeza-Yates, R.: Link-based characterization and detection of web spam. In: Proceedings of the 2nd International Workshop on Adversarial Information Retrieval on the Web, AIRWeb (2006)Google Scholar
  17. 17.
    Kolari, P., Java, A., Finin, T., Oates, T., Joshi, A.: Detecting spam blogs: A machine learning approach. In: 2006 Proceedings of the 21st National Conference on Artificial Intelligence, AAAI (2006)Google Scholar
  18. 18.
    Castillo, C., Donato, D., Gionis, A., Murdock, V., Silvestri, F.: Know your neighbors: web spam detection using the web topology. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2007, pp. 423–430. ACM, New York (2007)Google Scholar
  19. 19.
    Szummer, M., Jaakkola, T.: Clustering and efficient use of unlabeled examples. In: Proceedings of Neural Information Processing Systems, NIPS (2001)Google Scholar
  20. 20.
    Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using gaussian fields and harmonic functions. In: Proceedings of the International Conference on Machine Learning, ICML (2003)Google Scholar
  21. 21.
    Azran, A.: The rendezvous algorithm: Multiclass semi-supervised learning with markov random walks. In: Proceedings of the International Conference on Machine Learning, ICML (2007)Google Scholar
  22. 22.
    Geng, G., Li, Q., Zhang, X.: Link based small sample learning for web spam detection. In: Proceedings of the 18th International Conference on World Wide Web, WWW 2009, pp. 1185–1186 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Wojciech Indyk
    • 1
  • Tomasz Kajdanowicz
    • 1
  • Przemyslaw Kazienko
    • 1
  • Slawomir Plamowski
    • 1
  1. 1.Faculty of Computer Science and ManagementWroclaw University of TechnologyWroclawPoland

Personalised recommendations