On Fitness Function Based upon Quasigroups Power Sequences

  • Eliška Ochodková
  • Jiří Dvorský
  • Pavel Krömer
  • Pavel Tuček
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 189)

Abstract

In the last few years, quasigroups are finding their way to becoming a building block of cryptographic primitives. This paper extends previous work done on evolutionary search for quasigroups by defining fitness functions based on heterogeneous sequences generated during the exponentiation of quasigroups elements. In this paper, we explore how succeed a genetic algorithm in search for maximum of the best fitness function and some statistics about this fitness function is presented, too.

Keywords

Quasigroups Genetic algorithms Fitness function Evolutionary search 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Panda, M., Abraham, A., Das, S., Patra, M.R.: Network intrusion detection system: A machine learning approach. In: Intelligent Decision Technologies, vol. 5(4), pp. 347–356 (2011)Google Scholar
  2. 2.
    Gligoroski, D., Markovski, S., Knapskog, S.J.: Multivariate quadratic trapdoor functions based on multivariate quadratic quasigroups. In: American Conference on Applied Mathematics (2008)Google Scholar
  3. 3.
    Gligoroski, D., Markovski, S., Knapskog, S.J.: The Stream Cipher Edon80. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 152–169. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Gligoroski, D., et al.: EdonR cryptographic hash function. Submition to NIST’s SHA-3 hash function competition (2008), http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
  5. 5.
    Gligoroski, D., Markovski, S.: Cryptographic potentials of quasigroup transformations. Talk at EIDMA Cryptography Working Group, Utrecht (2003)Google Scholar
  6. 6.
    Markovski, S., Gligoroski, D., Markovski, J.: Classification of quasigroups by random walk on torus. Journal of Applied Mathematics and Computing 19(1-2), 57–75 (2005)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Ochodkova, E., Kromer, P., Dvorsky, J., Abraham, P.J.A., Snasel, V.: Genetic search for quasigroups with heterogeneous power sequences. In: 2011 Third World Congress on Nature and Biologically Inspired Computing (NaBIC), pp. 533–539 (October 2011)Google Scholar
  8. 8.
    Ochodková, E., Dvorský, J., Snášel, V., Abraham, A.: Testing quasigroup identities using product of sequence. In: Pokorný, J., Snásel, V., Richta, K. (eds.) DATESO. CEUR Workshop Proceedings, vol. 567, pp. 155–162. CEUR-WS.org (2010)Google Scholar
  9. 9.
    Snášel, V., Dvorský, J., Ochodková, E., Krömer, P., Platoš, J., Abraham, A.: Genetic Algorithms Evolving Quasigroups with Good Pseudorandom Properties. In: Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O. (eds.) ICCSA 2010, Part III. LNCS, vol. 6018, pp. 472–482. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Snášel, V., Abraham, A., Dvorský, J., Ochodková, E., Platoš, J., Krömer, P.: Searching for quasigroups for hash functions with genetic algorithms. In: World Congress on Nature & Biologically Inspired Computing, NaBIC 2009, pp. 367–372. IEEE Computer Society (2009)Google Scholar
  11. 11.
    Belousov, V.D.: Osnovi teorii kvazigrup i lup, Nauka, Moscow (1967) (in Russian)Google Scholar
  12. 12.
    McKay, B.D., Wanless, I.M.: On the Number of Latin Squares. Journal Annals of Combinatorics 9(3), 335–344 (2005)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Borůvka, O.: Foundations of the theory of groupoids and groups. Wiley (1976)Google Scholar
  14. 14.
    Hilton, P., Pedersen, J.: Catalan Numbers, Their Generalization, and Their Uses. Journal The Mathematical Intelligencer 13(2), 64–75 (1991)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1996)Google Scholar
  16. 16.
    Kemperman, J.H.B.: Mixture with a limited number of modal intervals. Annal. Stat. 19, 2120–2144 (1991)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Eliška Ochodková
    • 1
  • Jiří Dvorský
    • 1
  • Pavel Krömer
    • 1
  • Pavel Tuček
    • 2
  1. 1.Faculty of Electrical Engineering and Computer Science Department of Computer ScienceVŠB - Technical University of OstravaOstravaCzech Republic
  2. 2.Faculty of Science, Department of GeoinformaticsPalacký University OlomoucOlomoucCzech Republic

Personalised recommendations