Protein Structure Prediction: Are We There Yet?

  • Ashish Runthala
  • Shibasish Chowdhury
Part of the Studies in Computational Intelligence book series (SCI, volume 450)


Correct mapping of functional network ofprotein sequences is one of the major issues in biological research. Detailed knowledge of high resolution protein conformations is the key to it. But still, there is a huge sequence-structure gap between the available number of protein sequences and the known count of experimentally solved structures. Because of several technical and resource limitations, experimentally determined structures do not exist for a vast majority of the available protein sequences. Different categories of computational algorithms, aiming at the highly accurate structure prediction of protein sequences are thus the prime focus of study in this chapter. Strengths, limitations and usage criteria are then discussed for each of these different categories. Different steps of the most reliable Comparative Modelling algorithm are then illustrated. The chapter also clarifies different practical and conceptual problems, obstructing experimental accuracy of each of these steps. Lastly, scope for further research to bridge existing gaps for developing better protein modelling methodology is highlighted. The major aspect of this chapter is to offer a detailed insight about the Protein Modelling Algorithms.


Modelling CASP PDB Template Alignment MODELLER HMM MQAP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zwanzig, R., Szabo, A., Bagchi, B.: Levinthal’s paradox. The Proceedings of the National Academy of Sciences USA 89, 20–22 (1992), doi:10.1073/pnas.89.1.20CrossRefGoogle Scholar
  2. 2.
    Berman, H., Bourne, P., Gilliland, G., Westbrook, J., Arzberger, P., Bhat, T.: Protein Data Bank (2000), (accessed June 15, 2011)
  3. 3.
    Guo, J.T., Ellrott, K., Xu, Y.: A historical perspective of template-based protein structure prediction. Methods in Molecular Biology 413, 3–42 (2008) PMID: 18075160 Google Scholar
  4. 4.
    Kryshtafovych, A., Fidelis, K., Moult, J.: CASP8 results in context of previous experiments. Proteins: Structure, Function and Bioinformatics 77(9), 217–228 (2009), doi:10.1002/prot.22562CrossRefGoogle Scholar
  5. 5.
    Mariani, V., Kiefer, F., Schmidt, T., Haas, J., Schwede, T.: Assessment of template based protein structure predictions in CASP9. Proteins: Structure, Function and Bioinformatics (2011) (in press)Google Scholar
  6. 6.
    Bonneau, R., Baker, D.: Ab-initio protein structure prediction: Progress and prospects. Annual Review of Biophysics Biomolecular Structure 30, 173–189 (2001), doi:10.1146/annurev.biophys.30.1.173CrossRefGoogle Scholar
  7. 7.
    Tress, M., Cheng, J., Baldi, P., Joo, K., Lee, J., Joo, H.S., Lee, J., Baker, D., Chivian, D., Kim, D., Ezkurdia, I.: Assessment of predictions submitted for the CASP7 domain prediction category. Proteins: Structure, Function and Bioinformatics 69(8), 137–151 (2007), doi:10.1002/prot.21675CrossRefGoogle Scholar
  8. 8.
    Jauch, R., Yeo, H.C., Kolatkar, P.R., Neil, D.C.: Assessment of CASP7 structure predictions for template free targets. Proteins: Structure, Function and Bioinformatics 69(8), 57–67 (2007), doi:10.1002/prot.21771CrossRefGoogle Scholar
  9. 9.
    Zhang, Y., Skolnick, J.: The protein structure prediction problem could be solved using the current PDB library. The Proceedings of the National Academy of Sciences USA 102(4), 1029–1034 (2005), doi:10.1073/pnas.0407152101CrossRefGoogle Scholar
  10. 10.
    Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25(17), 3389–3402 (1997), doi:10.1093/nar/25.17.3389Google Scholar
  11. 11.
    Eddy, S.R.: Profile hidden Markov models. Bioinformatics 14(9), 755–763 (1998), doi: 10.1093/bioinformatics/14.9.755CrossRefGoogle Scholar
  12. 12.
    Bateman, A., Coin, L., Durbin, R., Finn, R.D., Hollich, V., Griffiths-Jones, S., Khanna, A., Marshall, M., Moxon, S., Sonnhammer, E.L., Studholme, D.J., Yeats, C., Eddy, S.R.: The Pfam protein families database. Nucleic Acids Research 32(1), 138–141 (2004), doi: 10.1093/nar/gkh121CrossRefGoogle Scholar
  13. 13.
    Edgar, R.C., Sjolander, K.: COACH: profile-profile alignment of protein families using hidden Markov models. Bioinformatics 20(8), 1309–1318 (2004), doi:10.1093/bioinformatics/bth091CrossRefGoogle Scholar
  14. 14.
    Notredame, C., Higgins, D.G., Heringa, J.: T-Coffee: A novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology 302(1), 205–217 (2000), doi:10.1006/jmbi.2000.4042CrossRefGoogle Scholar
  15. 15.
    Schwede, T., Kopp, J., Guex, N., Peitsch, M.C.: SWISS-MODEL: An automated protein homology-modelling server. Nucleic Acids Research 31(13), 3381–3385 (2003) doi: 10.1093/nar/gkg520CrossRefGoogle Scholar
  16. 16.
    Sali, A., Blundell, T.L.: Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology 234(3), 779–815 (1993), doi:10.1006/jmbi.1993.1626CrossRefGoogle Scholar
  17. 17.
    Fiser, A., Sali, A.: ModLoop: automated modelling of loops in protein structures. Bioinformatics 19(18), 2500–2501 (2003), doi: 10.1093/bioinformatics/btg362 CrossRefGoogle Scholar
  18. 18.
    Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham, T.E., Debolt, S., Ferguson, D., Seib el, G., Collman, P.: AMBER, a package of computer-programs for applying molecular mechanics,<normal-mode analysis, molecular-dynamics and free-energy calculations to simulate the structural and energetic properties of molecules. Computer Physics Communications 91(1-3), 1–41 (1995), doi:10.1016/0010-4655(95)00041-DMATHCrossRefGoogle Scholar
  19. 19.
    Scott, W.R.P., Hunenberger, P.H., Mark, A.E., Billeter, S.R., Fennen, J., Torda, A.E., Huber, T., Kruger, P., van Gunsteren, W.F.: The GROMOS Biomolecular Simulation Program Package. The Journal of Physical Chemistry A 103(19), 3596–3607 (1999), doi:10.1021/jp984217fCrossRefGoogle Scholar
  20. 20.
    Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M.: CHARMM –A program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry 4(2), 187–217 (1983), doi:10.1002/jcc.540040211CrossRefGoogle Scholar
  21. 21.
    Biegert, A., Soding, J.: Sequence context-specific profiles for homology searching. Proceedings of the National Academy of Science USA 106(10), 3770–3775 (2009), doi:10.1073/pnas.0810767106CrossRefGoogle Scholar
  22. 22.
    Söding, J.: Protein homology detection by HMM-HMM comparison. Bioinformatics 21, 951–960 (2005), doi:10.1093/bioinformatics/bti125CrossRefGoogle Scholar
  23. 23.
    Lawrence, A.K., Michael, J.E.S.: Protein structure prediction on the Web: a case study using the Phyre server. Nature Protocols 4, 363–371 (2009), doi:10.1038/nprot.2009.2Google Scholar
  24. 24.
    Jonathan, J.W., Liam, J.M., Kevin, B., Bernard, F.B., David, T.J.: The Disopred server for the prediction of protein disorder. Bioinformatics 20(13), 2138–2139 (2004), doi:10.1093/bioinformatics/bth195CrossRefGoogle Scholar
  25. 25.
    Roland, L., Dunbrack Jr.: Sequence comparison and protein structure prediction. Current Opinion in Structural Biology 16(3), 374–384 (2006), doi:10.1016/ Scholar
  26. 26.
    Gonzalez, M.W., Pearson, W.R.: Homologous over-extension: a challenge for iterative similarity searches. Nucleic Acids Research 38(7), 2177–2189 (2010), doi: 10.1093/nar/gkp1219 CrossRefGoogle Scholar
  27. 27.
    Teichmann, S.A., Chothia, C., Church, G.M., Park, J.: Fast assignment of protein structures to sequences using the intermediate sequence library PDB-ISL. Bioinformatics 16(2), 117–124 (2000), doi:10.1093/bioinformatics/16.2.117CrossRefGoogle Scholar
  28. 28.
    Söding, J.: Protein homology detection by HMM-HMM comparison. Bioinformatics 21, 951–960 (2005), doi:10.1093/bioinformatics/bti125CrossRefGoogle Scholar
  29. 29.
    Sanchez, R., Sali, A.: Evaluation of comparative protein structure modelling by MODELLER-3. Proteins: Structure, Function and Bioinformatics 1, 50–58 (1997), doi:10.1002/(SICI)1097-0134(1997)1+<50::AID-PROT8>3.0.CO;2-SGoogle Scholar
  30. 30.
    CASP Home Page, (accessed June 15, 2011)
  31. 31.
    Jaroszewski, L., Rychlewski, L., Godzik, A.: Improving the quality of twilight-zone alignments. Protein Science 9(8), 1487–1496 (2000), doi:10.1110/ps.9.8.1487CrossRefGoogle Scholar
  32. 32.
    Cozzetto, D., Giorgetti, A., Raimondo, D., Tramontano, A.: The evaluation of protein structure prediction results. Molecular Biotechnology 39(1), 1–8 (2008), doi:10.1007/s12033-007-9023-6CrossRefGoogle Scholar
  33. 33.
    Moult, J., Fidelis, K., Kryshtafovych, A., Rost, B., Hubbard, T., Tramontano, A.: Critical assessment of methods of protein structure prediction—Round VII. Proteins: Structure, Function and Bioinformatics 69(8), 3–9 (2007), doi:10.1002/prot.21767CrossRefGoogle Scholar
  34. 34.
    Kopp, J., Schwede, T.: The SWISS-MODEL Repository of annotated three-dimensional protein structure homology models. Nucleic Acids Research 32(1), D230–D234 (2004), doi: 10.1093/nar/gkh008CrossRefGoogle Scholar
  35. 35.
    Jones, T.A., Thirup, S.: Using known substructures in protein model building and crystallography. EMBO J. 5(4), 819–822 (1986) PMID: 3709525 Google Scholar
  36. 36.
    Clore, G.M., Brunger, A.T., Karplus, M., Gronenborn, A.M.: Application of molecular dynamics with interproton distance restraints to three-dimensional protein structure determination, A model study of crambin. Journal of Molecular Biology 191(3), 523–551 (1986), doi:10.1016/0022-2836(86)90146-4CrossRefGoogle Scholar
  37. 37.
    Fiser, A., Fieg, M., Brooks III, C.L., Sali, A.: Evolution and physics in comparative protein structure modelling. Accounts of Chemical Research 35(6), 413–421 (2002), doi:10.1021/ar010061hCrossRefGoogle Scholar
  38. 38.
    Melo, F., Sanchez, R., Sali, A.: Statistical potentials for fold assessment. Protein Science 11(2), 430–448 (2002), doi:10.1002/pro.110430CrossRefGoogle Scholar
  39. 39.
    Xiang, Z., Honig, B.: Extending the accuracy limits of prediction for side-chain conformations. Journal of Molecular Biology 311(2), 421–430 (2001), doi:10.1006/jmbi.2001.4865CrossRefGoogle Scholar
  40. 40.
    Repiso, A., Oliva, B., Vives Corrons, J.L., Carreras, J., Climent, F.: Glucose phosphate isomerase deficiency: enzymatic and familial characterization of Arg346His mutation. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1740(3), 467–4471 (2005), doi:10.1016/j.bbadis.2004.10.008CrossRefGoogle Scholar
  41. 41.
    Kryshtafovych, A., Fidelis, K.: Protein structure prediction and model quality assessment. Drug Discovery Today 14(7-8), 386–393 (2008), doi:10.1016/j.drudis.2008.11.010CrossRefGoogle Scholar
  42. 42.
    Xu, J., Zhang, Y.: How significant is a protein structure similarity with TM-score=0. 5? Bioinformatics 26, 889–895 (2010), doi: 10.1093/bioinformatics/btq066 CrossRefGoogle Scholar
  43. 43.
    Zemla, A.: LGA - a Method for Finding 3D Similarities in Protein Structures. Nucleic Acids Research 31(13), 3370–3374 (2003), doi:10.1093/nar/gkg57CrossRefGoogle Scholar
  44. 44.
    Yang, T., Zhou, Y.: Ab initio folding of terminal segments with secondary structures reveals the fine difference between two closely related all-atom statistical energy functions. Protein Science 72, 1212–1219 (2008), doi:10.1110/ps.033480.107CrossRefGoogle Scholar
  45. 45.
    Hao, F., Xavier, P., Alan, E.M.: Mimicking the action of folding chaperones by Hamiltonian replica-exchange molecular dynamics simulations: Application in the refinement of de novo models. Proteins: Structure, Function, and Bioinformatics (in press, 2012), doi:10.1002/prot.24068Google Scholar
  46. 46.
    Qian, B., Raman, S., Das, R.: High-resolution structure prediction and the crystallographic phase problem. Nature 450(7167), 259–264 (2007), doi:10.1038/nature06249CrossRefGoogle Scholar
  47. 47.
    Chen, J., Charles, L., Brooks III, C.L.: Can molecular dynamics simulations provide high-resolution refinement of protein structure? Proteins: Structure, Function and Bioinformatics 67(4), 922–930 (2007), doi:10.1002/prot.21345CrossRefGoogle Scholar
  48. 48.
    Bower, M.J., Cohen, F.E., Dunbrack Jr., R.L.: Prediction of protein side-chain rotamers from a backbone-dependent rotamer library: a new homology modelling tool. Journal of Molecular Biology 267(5), 1268–1282 (1997), doi:10.1006/jmbi.1997.0926CrossRefGoogle Scholar
  49. 49.
    Zhang, Y.: Progress and challenges in protein structure prediction. Current Opinion in Structural Biology 18(3), 342–348 (2008), doi:10.1016/ Scholar
  50. 50.
    Simons, K.T., Bonneau, R., Ruczinski, I., Baker, D.: Ab initio protein structure prediction of CASP III targets using ROSETTA. Proteins: Structure, Function and Bioinformatics 37(3), 171–176 (1999), doi:10.1002/(SICI)1097-0134(1999)37:3+<171::AID-PROT21>3.0.CO;2-Z CrossRefGoogle Scholar
  51. 51.
    Ben-David, M., Noivirt-Brik, O., Paz, A., Prilusky, J., Sussman, J.L., Levy, Y.: Assessment of CASP8 structure predictions for template free targets. Proteins: Structure, Function and Bioinformatics 77(9), 50–65 (2009), doi:10.1002/prot.2259CrossRefGoogle Scholar
  52. 52.
    Centeno, N.B., Planas-Iglesias, J., Oliva, B.: Comparative modelling of protein structure and its impact on microbial cell factories. Microbial Cell Factories 4, 20 (2005), doi:10.1186/1475-2859-4-20CrossRefGoogle Scholar
  53. 53.
    Kretsinger, R.H., Ison, R.E., Hovmoller, S.: Prediction of protein structure. Methods in Enzymology 383, 1–27 (2004) PMID: 15063644 CrossRefGoogle Scholar
  54. 54.
    Feng-Chi, C., Ben-Yang, L., Chia-Lin, P., Hsuan-Yu, L., Andrew, Y.F.C.: Assessing Determinants of Exonic Evolutionary Rates in Mammals. Molecular Biology and Evolution (in press, 2012), doi:10.1093/molbev/mss116Google Scholar
  55. 55.
    Pentony, M.M., Winters, P., Penfold-Brown, D., Drew, K., Narechania, A., DeSalle, R., Bonneau, R., Purugganan, M.D.: The Plant Proteome Folding Project: Structure and Positive Selection in Plant Protein Families. Genome Biology and Evolution 4(3), 360–371 (2012), doi:10.1093/gbe/evs015CrossRefGoogle Scholar
  56. 56.
    Kevin, D., Patrick, W., Glenn, L.B., Viktors, B., Keith, U., Jonathan, A., Michael, R., Erik, S., Bill, B., David, R.G., Trisha, N.D., Dennis, S., Lars, M., Richard, B.: The Proteome Folding Project: Proteome-scale prediction of structure and function. Genome Research 21(11), 1981–1994 (2011), doi:10.1101/gr.121475.111CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Biological Sciences DepartmentBirla Institute of Technology & SciencePilaniIndia

Personalised recommendations