Skip to main content

Geocenter Variations from Analysis of SLR Data

  • Conference paper
  • First Online:
Reference Frames for Applications in Geosciences

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 138))

Abstract

The Earth’s center of mass (CM) is defined in the satellite orbit dynamics as the center of mass of the entire Earth system, including the solid earth, oceans, cryosphere and atmosphere. Satellite Laser Ranging (SLR) provides accurate and unambiguous range measurements to geodetic satellites to determine variations in the vector from the origin of the ITRF to the CM. Estimates of the Global mass redistribution induced geocenter variations at seasonal scales from SLR are in good agreement with the results from the global inversion from the displacements of the dense network of GPS sites and from ocean bottom pressure model and GRACE-derived geoid changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altamimi Z, Collilieux X, MĂ©tivier L (2010) ITRF2008: an improved solution of the international terrestrial reference frame. J Geodesy. doi:10.1007/s00190-011-04444-4

  • Angermann D, MĂ¼ller H (2008) On the strengths of SLR observations to realize the scale and origin of the terrestrial reference system. In: Sideris MG (ed) Observing our changing earth: Proceedings of the 2007 IAG General Assembly, vol 133, pp 21–29. Springer, Perugia, 2–13 July 2007

    Google Scholar 

  • Bettadpur S (2007) UTCSR level-2 processing standards document for level-2 product release 0004, GRACE 327-742, ftp://podaac-ftp.jpl.nasa.gov/allData/grace/

  • Blewitt G (2003) Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. J Geophys Res 108(B2):2103. doi:10.1029/2002JB002082

    Article  Google Scholar 

  • Blewitt G, Clarke P (2003) Inversion of Earth’s changing shape to weigh sea level in static equilibrium with surface mass redistribution. J Geophys Res 108(B6):2311. doi:10.1029/2002JB002290

    Article  Google Scholar 

  • Chao BF, O’Connor WP, Change ATC, Hall DY, Foster J (1987) Sno load effects on the Earth’s rotation and Gravitational field, 1979–1985. J Geophys Res 92(B9):9415–9422

    Article  Google Scholar 

  • Chen JL, Wilson CR, Eanes RJ, Nerem RS (1999) Geophysical interpretation of observed geocenter variations. J Geophys Res 104:2683–2690

    Article  Google Scholar 

  • Cheng MK, Ries J (2009) Monthly estimates of C20 from 5 SLR satellites, GRACE Technical Note 05, ftp://podaac.jpl.nasa.gov/allData/grace/docs/TN-05_C20_SLR.txt

  • Cheng M, Ries JC, Tapley BD (2011) Variations of the Earth’s figure axis from satellite laser ranging and GRACE. J Geophys Res 116:B01409. doi:10.1029/2010JB000850

    Article  Google Scholar 

  • Collilieux X, Altamimi Z, Ray J, van Dam T, Wu X (2009) Effect of the satellite laser ranging network distribution on geocenter motion estimation. J Geophys Res 114:B04402. doi:10.1029/2008JB005727

    Article  Google Scholar 

  • Coulot D, BĂ©rio Ph, Bonnefond P, Exertier P, FĂ©raudy D, Laurain O, Deleflie F (2009) Satellite laser ranging biases and terrestrial reference frame scale factor, observing our changing earth. Proceedings of the 2007 IAG general assembly, vol 133, pp 39–46. Springer, IAG, Perugia, 2–13 July 2007

    Google Scholar 

  • Dong D, Dickey JO, Chao Y, Cheng MK (1997) Geocenter variations caused by atmosphere, ocean and surface ground water. Geophys Res Lett 24(15):1867–1870

    Article  Google Scholar 

  • Dong D, Yunck T, Heflin M (2003) Origin of the international terrestrial reference frame. J Geophys Res 108:B42200. doi:10.1029/2002JB002035

    Google Scholar 

  • Eanes RJ, Kar S, Bettadpur SV, Watkins MM (1997) Low-frequency geocenter motion determined from SLR tracking data. Eos Trans AGU, 78(46), Fall meeting, Supplementary, F156

    Google Scholar 

  • Farrell WE (1972) Deformation of the Earth by surface loading. Rev Geophys Space Phys 10:761–797

    Article  Google Scholar 

  • Greff-Lefftz M (2000) Secular variation of the geocenter. J Geophys Res 105(B11):25685–25692

    Article  Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical geodesy. W. H. Freeman and Co., San Francisco/London

    Google Scholar 

  • Jansen MJF, Kusche J, Schrama EJO (2006) Low-degrees load harmonics coefficients from combining GRACE, GPS time series and a priori dynamics. In: Proceedings IAG symposium, 2006

    Google Scholar 

  • Jansen MJF, Gunter BC, Kusche J (2009) The impact of GRACE, GPS and OBP data on estimates of global mass redistribution. Geophys J Int 177:1–13. doi:10.1111/j.1356-246X.2008.04031x

    Article  Google Scholar 

  • Kar S (1997) Long-period variations in the geocenter observed from laser tracking of multiple satellites, CSR report CSR-97-2, The University of Texas Center for Space Research, Mail stop R1000, Austin, TX

    Google Scholar 

  • Kusche J, Schrama E (2005) Surface mass redistribution inversion from global GPS: a unified observation model. J Geophys Res 110:B09409. doi:10.1029/2004JB003556

    Article  Google Scholar 

  • Lambeck K (1988) Geophysical geodesy. Clarendon, Oxford

    Google Scholar 

  • McCarthy DD, Petit G (2003) IERS conventions (2003) IERS technical note no. 32, International earth rotation and reference systems service. Frankfurt, Germany

    Google Scholar 

  • MĂ©tivier L, Grefftz-Lefftz M, Atamimi Z (2010) On secular geocenter motion: the impact of climate changes. Earth Planet Sci Lett 296(3–4):360–366. doi:10.1016/j.epsl.2010.05.021

    Article  Google Scholar 

  • Pavlis EC (2002) Dynamical determination of origin and scale in the earth system from satellite laser ranging. In: Adam J, Schwarz K-P (eds) Vistas for geodesy in the new millennium. Springer, New York, pp 36–41

    Google Scholar 

  • Pavlis EC, Kuzmicz-Cieslak M (2009) Geocenter motion: causes and modeling approaches. In: Schillack S (ed) Proceedings of 16th international laser workshop, Poznan pp 16–26

    Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008) An earth gravitational model to degree 2160: EGM2008, 2008 general assembly of the European geosciences union, Vienna, Austria

    Google Scholar 

  • Pearlman MR, Degnan JJ, Bosworth JM (2002) The International laser ranging service. Adv Space Res 30(2):135–143. doi:10.1016/S0273-1177(02)00277-6

    Article  Google Scholar 

  • Petit G, Luzum B, IERS Conventions (2010) IERS technical note no. 36, international earth rotation and reference systems service. Frankfurt, Germany

    Google Scholar 

  • Ray J (ed) (1999) IERS analysis campaign to investigate motions of the geocenter, IERS technical note 25, Observatoire de Paris, Paris

    Google Scholar 

  • Ries J (2007) Satellite laser ranging and the terrestrial reference frame: principal sources of uncertainty in the determination of the scale, Geophys Res Abst 9:10809, EGU General Assembly, Vienna, 15–20 April 2007 [SRef-ID: 1607-7962/gra/EGU2007-A-10809]

    Google Scholar 

  • Ries J (2008) LPOD2005: a practical realization of ITRF2005 for SLR-based POD, Ocean Surface topography science team meeting, 10–12 Nov 2008, Nice, France; available at ftp.csr.utexas.edu/pub/jason/models/coords

    Google Scholar 

  • Torge W (1980) Geodesy, De Gruyter, New York

    Google Scholar 

  • Trupin AS, Meier MF, Wahr J (1992) Effects of melting glaciers on the Earth’s rotation and gravitational field: 1965–1984. Geophys J Int 108:1–15

    Article  Google Scholar 

  • van Dam T, Wahr JM, LavallĂ©e D (2007) A comparison of annual vertical crustal displacements from GPS and gravity recovery and climate experiment (GRACE) over Europe. J Geophys Res 114:B04402. doi:10.1029/2006JB004335

    Google Scholar 

  • Wahr J, Molenar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(B12):30,205–30,229

    Google Scholar 

  • Watkins MM, Eanes RJ (1997) Observations of tidally coherent diurnal and semi-diurnal variations in the geocenter. Geophys Res Lett 24:2231–2234

    Article  Google Scholar 

  • Wu X, Argus D, Heflin M, Ivins E, Webb F (2003) Site distribution and aliasing effects in the inversion for load coefficients and geocenter motion from GPS data. Geophys Res Lett 30(14):1742. doi:10.1029/2003GL017546

    Article  Google Scholar 

  • Wu X, Heflin M, Ivins E, Fukumori I (2006) Seasonal and interannual global surface mass variations from multisatellites geodetic data. J Geophys Res 111:B09401. doi:10.1029/2005JB004100

    Article  Google Scholar 

  • Wu X, Heflin M, Schotman H, Vermeersen B, Dong D, Gross R, Ivins E, Moore A, Owen S (2010a) Simultaneous estimation of global present-day water transport and glacial isostatic adjustment. Nat Geosci. doi:10.1038/NGEO938

  • Wu X, Collilieux X, Altamimi Z (2010b) Data sets and inverse strategies for global surface mass variations. Geophys Res Abstr 12, EGU2010-5484, http://meetingorganizer.copernicus.org/EGU2010/EGU2010-5484.pdf

Download references

Acknowledgments

This research was supported by NASA grants NNX08AE99E and JPL1368074.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cheng, M.K., Ries, J.C., Tapley, B.D. (2013). Geocenter Variations from Analysis of SLR Data. In: Altamimi, Z., Collilieux, X. (eds) Reference Frames for Applications in Geosciences. International Association of Geodesy Symposia, vol 138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32998-2_4

Download citation

Publish with us

Policies and ethics