Multilevel Partition of Unity Method for Elliptic Problems with Strongly Discontinuous Coefficients

Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 89)

Abstract

In this paper, we study the robustness of a multilevel partition of unity method. To this end, we consider a scalar diffusion equation in two and three space dimensions with large jumps in the diffusion coefficient or material properties. Our main focus in this investigation is if the use of simple enrichment functions is sufficient to attain a robust solver independent of the geometric complexity of the material interface.

Keywords

Multilevel methods Robustness Jumping coefficients Enrichment 

References

  1. 1.
    R.E. Alcouffe, A. Brandt, J.E. Dendy Jr., J.W. Painter, The multi-grid methods for the diffusion equation with strongly discontinuous coefficients. SIAM J. Sci. Stat. Comput. 2(4), 430–454 (1981)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    I. Babuška, G. Caloz, J.E. Osborn, Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal. 31, 945–981 (1994)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    I. Babuška, J.M. Melenk, The partition of unity finite element method: basic theory and applications. Comput. Meth. Appl. Mech. Eng. 139, 289–314 (1996). Special issue on meshless methodsGoogle Scholar
  4. 4.
    I. Babuška, J.M. Melenk, The partition of unity method. Int. J. Numer. Method Eng. 40, 727–758 (1997)MATHCrossRefGoogle Scholar
  5. 5.
    L. Chen, M. Holst, J. Xu, Y. Zhu, Local multilevel preconditioners for elliptic equations with jump coefficients on bisection grids (2010). Preprint, arXiv:1006.3277v2Google Scholar
  6. 6.
    J.E. Dendy, Black box multigrid. J. Comput. Phys. 48, 366–386 (1982)MathSciNetMATHGoogle Scholar
  7. 7.
    T.-P. Fries, T. Belytschko, The extended/generalized finite element method: an overview of the method and its applications. Int. J. Numer. Method Eng. 84(3), 253–304 (2010)MathSciNetMATHGoogle Scholar
  8. 8.
    M. Griebel, M.A. Schweitzer, A particle-partition of unity method—part II: efficient cover construction and reliable integration. SIAM J. Sci. Comput. 23(5), 1655–1682 (2002)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    M. Griebel, M.A. Schweitzer, A particle-partition of unity method—part III: a multilevel solver. SIAM J. Sci. Comput. 24(2), 377–409 (2002)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    M. Griebel, M.A. Schweitzer, A particle-partition of unity method—part V: boundary conditions, in Geometric Analysis and Nonlinear Partial Differential Equations, ed. by S. Hildebrandt, H. Karcher (Springer, Berlin, 2002), pp. 517–540Google Scholar
  11. 11.
    M. Griebel, M.A. Schweitzer, A particle-partition of unity method—part VII: adaptivity, in Meshfree Methods for Partial Differential Equations III, ed. by M. Griebel, M.A. Schweitzer. Lecture Notes in Computational Science and Engineering, vol. 57 (Springer, Berlin, 2006), pp. 121–148Google Scholar
  12. 12.
    B. Heise, M. Kuhn, Parallel solvers for linear and nonlinear exterior magnetic field problems based upon coupled fe/be formulations. Computing 56(3), 237–258 (1996)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36, 9–15 (1970–1971)Google Scholar
  14. 14.
    M.A. Schweitzer, A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol. 29 (Springer, Berlin, 2003)Google Scholar
  15. 15.
    M.A. Schweitzer, An algebraic treatment of essential boundary conditions in the particle–partition of unity method. SIAM J. Sci. Comput. 31, 1581–1602 (2009)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    M.A. Schweitzer, Stable enrichment and local preconditioning in the particle–partition of unity method. Numer. Math. 118(1), 137–170 (2011)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    M.A. Schweitzer, Generalizations of the finite element method. Cent. Eur. J. Math. 10(1), 3–24 (2012)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    U. Trottenberg, C.W. Osterlee, A. Schüller, Multigrid, in Appendix A: An Introduction to Algebraic Multigrid by K. Stüben (Academic, San Diego, 2001), pp. 413–532Google Scholar
  19. 19.
    C. Wang, Fundamental models for fuel cell engineering. Chem. Rev. 104, 4727–4766 (2004)CrossRefGoogle Scholar
  20. 20.
    J. Xu, Y. Zhu, Uniform convergent multigrid methods for elliptic problems with strongly discontinuous coefficients. Math. Models Methods Appl. Sci. 18(1), 77–105 (2008)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institut für Parallele und Verteilte SystemeUniversität StuttgartStuttgartGermany

Personalised recommendations