Immersed Molecular Electrokinetic Finite Element Method for Nano-devices in Biotechnology and Gene Delivery

  • Wing Kam Liu
  • Adrian M. Kopacz
  • Tae-Rin Lee
  • Hansung Kim
  • Paolo Decuzzi
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 89)


It has been demonstrated from recent research that modern uses of multiscale analysis, uncertainty quantification techniques, and validation experiments is essential for the design of nanodevices in biotechnology and medicine. The 3D immersed molecular electrokinetic finite element method (IMEFEM) will be presented for the modeling of micro fluidic electrokinetic assembly of nanowires, filaments and bio-molecules. This transformative bio-nanotechnology is being developed to enable gene delivery systems to achieve desired therapeutic effects and for the design and optimization of an electric field enabled nanotip DNA sensor. For the nanodiamond-based drug delivery device we will discuss the multiscale analysis, quantum and molecular mechanics, immersed molecular finite element and meshfree methods, uncertainty quantification, and validation experiments. In addition, we will describe the mathematical formulation of pH control interactions among chemically functionalized nanodiamonds, and their interactions with polymers. For the nanotip sensor, we will discuss the underlying mechanics and physical parameters influencing the bio-sensing efficiency, such as the threshold of applied electric field, biomolecule deformation, and nanoscale Brownian motion. Through multiscale analysis, we provide guidelines for nanodevice design, including fundamental mechanisms driving the system performance and optimization of distinct parameters.


IMEFEM Sensors Nanoparticles Nanodiamonds 



This work was supported by NSF CMMI 0856333 and NSF CMMI 0856492. WKL is supported by World Class University Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (R33-10079).


  1. 1.
    A. Adnan, R. Lam, H. Chen, J. Lee, D. Schaffer, A. Barnard, G. Schatz, D. Ho, W.K. Liu, Atomistic simulation and measurement of ph dependent cancer therapeutic interactions with nanodiamond carrier. Mol. Pharm. 8, 368–374 (2011)CrossRefGoogle Scholar
  2. 2.
    M. Gay, L. Zhang, W.K. Liu, Stent modeling using immersed finite element method. Comput. Methods Appl. Mech. Eng. 195, 4358–4370 (2006)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    A.M. Kopacz, W.K. Liu, S.Q. Liu, Simulation and prediction of endothelial cell adhesion modulated by molecular engineering. Comput. Methods Appl. Mech. Eng. 197(25–28), 2340–2352 (2008)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    A.M. Kopacz, N. Patankar, W.K. Liu, The immersed molecular finite element method. Comput. Methods Appl. Mech. Eng. 233–236, 28–39 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    J. Kotz, P. Treichel, J. Townsend, Chemistry and Chemical Reactivity (Brooks Cole, Belmont, 2009)Google Scholar
  6. 6.
    T.R. Lee, Y.S. Chang, J.B. Choi, D.W. Kim, W.K. Liu, Y.J. Kim, Immersed finite element method for rigid body motions in the incompressible navier-stokes flow. Comput. Methods Appl. Mech. Eng. 197(25–28), 2305–2316 (2008)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Y. Liu, W.K. Liu, Rheology of red blood cell aggregation by computer simulation. J. Comput. Phys. 220(1), 139–154 (2006)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Y. Liu, L. Zhang, X. Wang, W.K. Liu, Coupling of navier-stokes equations with protein molecular dynamics and its application to hemodynamics. Int. J. Numer. Methods Fluids 46, 1237–1252 (2004)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Y. Liu, J.H. Chung, W.K. Liu, R. Ruoff, Dielectrophoretic assembly of nanowires. J. Phys. Chem. B 110(29), 14098–14106 (2006)CrossRefGoogle Scholar
  10. 10.
    W.K. Liu, D.W. Kim, S. Tang, Mathematical foundations of the immersed finite element method. Comput. Mech. 39, 211–222 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    W.K. Liu, Y. Liu, D. Farrell, L. Zhang, X.S. Wang, Y. Fukui, N. Patankar, Y. Zhang, C. Bajaj, J. Lee, J. Hong, X. Chen, H. Hsua, Immersed finite element method and its applications to biological systems. Comput. Methods Appl. Mech. Eng. 195, 1722–1749 (2006)MATHCrossRefGoogle Scholar
  12. 12.
    Y. Liu, W.K. Liu, T. Belytschko, N. Patankar, A.C. To, A.M. Kopacz, J.H. Chung, Immersed electrokinetic finite element method. Int. J. Numer. Methods Eng. 71, 379–405 (2007)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    P. Uthe, The development of polycationic materiala for gene delivery applications, Ph.D. dissertation, University of North Carolina, Chapel Hill (2010)Google Scholar
  14. 14.
    X. Wang, W.K. Liu, Extended immersed boundary method using fem and rkpm. Comput. Methods Appl. Mech. Eng. 193(12–14), 1305–1321 (2004)MATHCrossRefGoogle Scholar
  15. 15.
    L. Zhang, A. Gerstenberger, X. Wang, W.K. Liu, Immersed finite element method. Comput. Methods Appl. Mech. Eng. 193(21–22), 2051–2067 (2004)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    X.Q. Zhang, M. Chen, R. Lam, X. Xu, E. Osawa, D. Ho, Polymer-functionalized nanodiamond platforms as vehicles for gene delivery. ACS Nano 3, 2609–2616 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Wing Kam Liu
    • 1
    • 2
  • Adrian M. Kopacz
    • 3
  • Tae-Rin Lee
    • 3
  • Hansung Kim
    • 3
  • Paolo Decuzzi
    • 4
  1. 1.Walter P. Murphy Professor, Department of Mechanical EngineeringNorthwestern UniversityEvanstonUSA
  2. 2.School of Mechanical EngineeringWorld Class University (WCU) Program in Sungkyunkwan UniversitySuwonKorea
  3. 3.Department of Mechanical EngineeringNorthwestern UniversityEvanstonUSA
  4. 4.Department of Nanomedicine and Biomedical EngineeringThe Methodist Hospital Research InstituteHoustonUSA

Personalised recommendations